Loading…
A Fast, Compact Approximation of the Exponential Function
Neural network simulations often spend a large proportion of their time computing exponential functions. Since the exponentiation routines of typical math libraries are rather slow, their replacement with a fast approximation can greatly reduce the overall computation time. This article describes ho...
Saved in:
Published in: | Neural computation 1999-05, Vol.11 (4), p.853-862 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neural network simulations often spend a large proportion of their time computing exponential functions. Since the exponentiation routines of typical math libraries are rather slow, their replacement with a fast approximation can greatly reduce the overall computation time. This article describes how exponentiation can be approximated by manipulating the components of a standard (IEEE-754) floating-point representation. This models the exponential function as well as a lookup table with linear interpolation, but is significantly faster and more compact. |
---|---|
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/089976699300016467 |