Loading…
On complete convergence for weighted sums of coordinatewise negatively associated random vectors in Hilbert spaces
This paper establishes the {Baum--Katz} type theorem and the {Marcinkiewicz--Zymund} type strong law of large numbers for sequences of coordinatewise negatively associated and identically distributed random vectors $\{X,X_n,n\ge1\}$ taking values in a Hilbert space $H$ with general normalizing const...
Saved in:
Published in: | Taehan Suhakhoe hoebo 2022, 59(4), , pp.879-895 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper establishes the {Baum--Katz} type theorem and the {Marcinkiewicz--Zymund} type strong law of large numbers for sequences of coordinatewise negatively associated and identically distributed random vectors $\{X,X_n,n\ge1\}$ taking values in a Hilbert space $H$ with general normalizing constants $b_n=n^{\alpha}\widetilde L(n^{\alpha})$, where $\widetilde L(\cdot)$ is the de Bruijn conjugate of a slowly varying function $L(\cdot).$ The main result extends and unifies many results in the literature. The sharpness of the result is illustrated by two examples. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b210509 |