Loading…
Complete characterization of odd factors via the size, spectral radius or distance spectral radius of graphs
Given a graph $G,$ a $\{1,3,\ldots,2n-1\}$-factor of $G$ is a spanning subgraph of $G$, in which each degree of vertices is one of $\{1,3,\ldots,2n-1\}$, where $n$ is a positive integer. In this paper, we first establish a lower bound on the size (resp.~the spectral radius) of $G$ to guarantee that...
Saved in:
Published in: | Taehan Suhakhoe hoebo 2022, 59(4), , pp.1045-1067 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given a graph $G,$ a $\{1,3,\ldots,2n-1\}$-factor of $G$ is a spanning subgraph of $G$, in which each degree of vertices is one of $\{1,3,\ldots,2n-1\}$, where $n$ is a positive integer. In this paper, we first establish a lower bound on the size (resp.~the spectral radius) of $G$ to guarantee that $G$ contains a $\{1,3,\ldots,2n-1\}$-factor. Then we determine an upper bound on the distance spectral radius of $G$ to ensure that $G$ has a $\{1,3,\ldots,2n-1\}$-factor. Furthermore, we construct some extremal graphs to show all the bounds obtained in this contribution are best possible. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b210613 |