Loading…

OPERATORS A, B FOR WHICH THE ALUTHGE TRANSFORM AB IS A GENERALISED n-PROJECTION

A Hilbert space operator $A\in\B$ is a generalised \linebreak $n$-projection, denoted $A\in (G-n-P)$, if ${A^*}^n=A$. $(G-n-P)$-operators $A$ are normal operators with finitely countable spectra $\sigma(A)$, subsets of the set $\{0\}\cup\{\sqrt[n+1]{1}\}$. The Aluthge transform $\a$ of $A\in\B$ may...

Full description

Saved in:
Bibliographic Details
Published in:Taehan Suhakhoe hoebo 2023, 60(6), , pp.1555-1566
Main Authors: Bhagwati P. Duggal, 김인현
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Hilbert space operator $A\in\B$ is a generalised \linebreak $n$-projection, denoted $A\in (G-n-P)$, if ${A^*}^n=A$. $(G-n-P)$-operators $A$ are normal operators with finitely countable spectra $\sigma(A)$, subsets of the set $\{0\}\cup\{\sqrt[n+1]{1}\}$. The Aluthge transform $\a$ of $A\in\B$ may be $(G-n-P)$ without $A$ being $(G-n-P)$. For doubly commuting operators $A, B\in\B$ such that $\sigma(AB)=\sigma(A)\sigma(B)$ and $\|A\|\|B\|\leq \left\|\c\right\|$, $\c\in (G-n-P)$ if and only if $A=\left\|\a\right\|(A_{00}\oplus(A_{0}\oplus A_u))$ and $B=\left\|\b\right\|(B_0\oplus B_u)$, where $A_{00}$ and $B_0$, and $A_0\oplus A_u$ and $B_u$, doubly commute, $A_{00}B_0$ and $A_0$ are 2 nilpotent, $A_u$ and $B_u$ are unitaries, $A^{*n}_u=A_u$ and $B^{*n}_u=B_u$. Furthermore, a necessary and sufficient condition for the operators $\alpha A$, $\beta B$, $\alpha \a$ and $\beta \b$, $\alpha=\frac{1}{\left\|\a\right\|}$ and $\beta=\frac{1}{\left\|\b\right\|}$, to be $(G-n-P)$ is that $A$ and $B$ are spectrally normaloid at $0$. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b220747