Loading…
TWO-WEIGHT NORM ESTIMATES FOR SQUARE FUNCTIONS ASSOCIATED TO FRACTIONAL SCHRÖDINGER OPERATORS WITH HARDY POTENTIAL
Let $d\in\mathbb{N}$ and ${\alpha}\in(0,\min\{2,d\})$. For any $a\in[a^\ast,\infty)$, the fractional Schr\"odinger operator $\mathcal{L}_a$ is defined by \begin{equation*} \mathcal{L}_a:=(-\Delta)^{{\alpha}/2}+a{|x|}^{-{\alpha}}, \end{equation*} where $a^*:=-{\frac{2^{\alpha}{\Gamma}((d+{\alpha...
Saved in:
Published in: | Taehan Suhakhoe hoebo 2023, 60(6), , pp.1567-1605 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $d\in\mathbb{N}$ and ${\alpha}\in(0,\min\{2,d\})$. For any $a\in[a^\ast,\infty)$, the fractional Schr\"odinger operator $\mathcal{L}_a$ is defined by \begin{equation*} \mathcal{L}_a:=(-\Delta)^{{\alpha}/2}+a{|x|}^{-{\alpha}}, \end{equation*} where $a^*:=-{\frac{2^{\alpha}{\Gamma}((d+{\alpha})/4)^2}{{\Gamma}((d-{\alpha})/4)^2}}$. In this paper, we study two-weight Sobolev inequalities associated with $\mathcal{L}_a$ and two-weight norm estimates for several square functions associated with $\mathcal{L}_a$. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b220752 |