Loading…
Rotationally symmetric solutions of the prescribed higher mean curvature spacelike equations in Minkowski spacetime
In this paper we consider the existence of rotationally symmetric entire solutions for the prescribed higher mean curvature spacelike equations in Minkowski spacetime. As a first step, we study the associated 0-Dirichlet problems on a ball, and then we prove that all possible solutions can be extend...
Saved in:
Published in: | Taehan Suhakhoe hoebo 2024, 61(1), , pp.29-44 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we consider the existence of rotationally symmetric entire solutions for the prescribed higher mean curvature spacelike equations in Minkowski spacetime. As a first step, we study the associated 0-Dirichlet problems on a ball, and then we prove that all possible solutions can be extended to $+\infty$. The proof of our main results are based upon the topological degree methods and the standard prolongability theorem of ordinary differential equations. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b230001 |