Loading…
On translation lengths of pseudo-Anosov maps on the curve graph
We show that a pseudo-Anosov map constructed as a product of the large power of Dehn twists of two filling curves always has a geodesic axis on the curve graph of the surface. We also obtain estimates of the stable translation length of a pseudo-Anosov map, when two filling curves are replaced by mu...
Saved in:
Published in: | Taehan Suhakhoe hoebo 2024, 61(3), , pp.585-595 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that a pseudo-Anosov map constructed as a product of the large power of Dehn twists of two filling curves always has a geodesic axis on the curve graph of the surface. We also obtain estimates of the stable translation length of a pseudo-Anosov map, when two filling curves are replaced by multicurves. Three main applications of our theorem are the following: (a) determining which word realizes the minimal translation length on the curve graph within a specific class of words, (b) giving a new class of pseudo-Anosov maps optimizing the ratio of stable translation lengths on the curve graph to that on Teichm{\" u}ller space, (c) giving a partial answer of how much power is needed for Dehn twists to generate right-angled Artin subgroup of the mapping class group. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b230079 |