Loading…

Gradient-based kernel variable selection for support vector hazards machine

This study aims to improve the predictive performance for the event time through the machine learning model and find informative variables in the time-to-event data, simultaneously. To address this issue, after regarding the time-to-event data as the dichotomized counting processes data for predicti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Statistical Society 2024, 53(2), , pp.509-536
Main Authors: Jeong, Sanghun, Kang, Kyungjun, Yang, Hojin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to improve the predictive performance for the event time through the machine learning model and find informative variables in the time-to-event data, simultaneously. To address this issue, after regarding the time-to-event data as the dichotomized counting processes data for predicting survival time, we consider the time-dependent support vector machine (SVM) framework for the dichotomized counting process data, where the decision function in this framework consists of the time-independent risk score and time-dependent intercept. Also, we consider the empirical partial derivative of the risk score function with respect to each marginal predictor as the indicator for the important predictor. Through this approach, it is possible to predict survival time and find variables that affect on the survival time at the same time. Simulation studies were conducted to confirm the performance of the model, and real data analysis was conducted by predicting the survival time of the lung cancer after the diagnosis and selecting genes associate with lung cancer through human gene data.
ISSN:1226-3192
2005-2863
DOI:10.1007/s42952-024-00256-5