Loading…

Synthesis and characterization of polypyrrole doped by cage silsesquioxane with carboxyl groups

Cage silsesquioxane with carboxyl groups (POSS-COOH) was successfully synthesized, after which it was added to polypyrrole (PPy) as a dopant to produce the doped PPy (PPy/POSS-COOH) solution. The PPy/POSS-COOH composites were characterized by FTIR (Fourier transformation infrared spectroscopy), SEM...

Full description

Saved in:
Bibliographic Details
Published in:The Korean journal of chemical engineering 2017, 34(2), 203, pp.470-475
Main Authors: Shi, Gang, Che, Youxin, Wu, Luyan, Rong, Yao, Ni, Caihua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cage silsesquioxane with carboxyl groups (POSS-COOH) was successfully synthesized, after which it was added to polypyrrole (PPy) as a dopant to produce the doped PPy (PPy/POSS-COOH) solution. The PPy/POSS-COOH composites were characterized by FTIR (Fourier transformation infrared spectroscopy), SEM (Scanning electron microscopy), TGA (Thermo-gravimetric analysis), CV (Cyclic voltammetry) and RL (Reflection loss). Compared to PPy without POSS-COOH (un-PPy), the conductivity of PPy/POSS-COOH composites could be improved dramatically, reaching up to 0.850 S/cm at 25 °C. Under N 2 atmosphere, the residual rate of PPy/POSS-COOH was 68% at 700 °C, 14% higher than the one of un-PPy. Meanwhile, PPy/POSS-COOH had a reflection loss below −8 dB over 9.35 to 11.20GHz, with a minimum value of −10.32 dB at 10.54 GHz, thus demonstrating higher microwave absorption than un-PPy. This method may provide a facile route to produce doped conducting polymers with POSS-COOH.
ISSN:0256-1115
1975-7220
DOI:10.1007/s11814-016-0296-y