Loading…
Synthesis and characterization of polypyrrole doped by cage silsesquioxane with carboxyl groups
Cage silsesquioxane with carboxyl groups (POSS-COOH) was successfully synthesized, after which it was added to polypyrrole (PPy) as a dopant to produce the doped PPy (PPy/POSS-COOH) solution. The PPy/POSS-COOH composites were characterized by FTIR (Fourier transformation infrared spectroscopy), SEM...
Saved in:
Published in: | The Korean journal of chemical engineering 2017, 34(2), 203, pp.470-475 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cage silsesquioxane with carboxyl groups (POSS-COOH) was successfully synthesized, after which it was added to polypyrrole (PPy) as a dopant to produce the doped PPy (PPy/POSS-COOH) solution. The PPy/POSS-COOH composites were characterized by FTIR (Fourier transformation infrared spectroscopy), SEM (Scanning electron microscopy), TGA (Thermo-gravimetric analysis), CV (Cyclic voltammetry) and RL (Reflection loss). Compared to PPy without POSS-COOH (un-PPy), the conductivity of PPy/POSS-COOH composites could be improved dramatically, reaching up to 0.850 S/cm at 25 °C. Under N
2
atmosphere, the residual rate of PPy/POSS-COOH was 68% at 700 °C, 14% higher than the one of un-PPy. Meanwhile, PPy/POSS-COOH had a reflection loss below −8 dB over 9.35 to 11.20GHz, with a minimum value of −10.32 dB at 10.54 GHz, thus demonstrating higher microwave absorption than un-PPy. This method may provide a facile route to produce doped conducting polymers with POSS-COOH. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-016-0296-y |