Loading…

Electricity generation from retting wastewater consisting of recalcitrant compounds using continuous upflow microbial fuel cell

Recalcitrant compounds like phenol found in coconut husk retting effluent cause the deterioration of water quality when discharged from retting ponds into other water sources. Continuous upflow microbial fuel cell (MFC) was evaluated for treating retting wastewater at different loading rates to dete...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioprocess engineering 2015, 20(4), , pp.753-759
Main Authors: Jayashree, C, Sweta, Singh, Arulazhagan, P, Yeom, I. T, Iqbal, M. I. I, Rajesh Banu, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recalcitrant compounds like phenol found in coconut husk retting effluent cause the deterioration of water quality when discharged from retting ponds into other water sources. Continuous upflow microbial fuel cell (MFC) was evaluated for treating retting wastewater at different loading rates to determine power generation, chemical oxygen demand (COD) consumption rate and phenol removal for a period of 270 days. A maximum power density of 254 mW/m² was achieved during the treatment of retting wastewater (external resistance — 350Ω). COD removal of 70% was accomplished at a loading rate of 0.45 g COD/L reactor/day and phenol removal of 95% was obtained at a loading rate of 0.28 g phenol/L reactor/day. The power density exhibited an increasing pattern as the loading rate of MFC was increased from 0.45 to 2.69 g COD/L reactor/day. This study describes the treatment of retting wastewater employing continuous upflow MFC with 95% phenol removal. Therefore, MFC can be considered as an alternative for the efficient removal of phenol and current generation in retting wastewater.
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-015-0017-0