Loading…

Parameter optimization of five-axis polishing using abrasive belt flap wheel for blisk blade

Considering the weak rigidity of blisk blades and the limited accessibility of blisk tunnels, polishing blisk blades is difficult when using tools with poor flexibility and large dimension. Hence, to reduce the Surface roughness (SR) of a blisk blade, five-axis polishing method with Abrasive belt fl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2017, 31(10), , pp.4805-4812
Main Authors: Zhang, Junfeng, Shi, Yaoyao, Lin, Xiaojun, Li, Zhishan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considering the weak rigidity of blisk blades and the limited accessibility of blisk tunnels, polishing blisk blades is difficult when using tools with poor flexibility and large dimension. Hence, to reduce the Surface roughness (SR) of a blisk blade, five-axis polishing method with Abrasive belt flap wheel (ABFW) is employed to polish the blisk blade based on the analysis of the blisk structure and advantages of ABFW polishing. Polishing experiments based on central composite design are performed using ABFW. Response surface method (RSM) is employed to establish a predictive model between SR and various parameters, including ABFW size, contact force, spindle speed, and feed rate. Analysis of variance is then performed to evaluate the proposed model. The degree of influence of each factor on SR after polishing using ABFW is determined by plotting main effects. The interactions of polishing factors on SR are analyzed by RSM. Optimal parameters are obtained by response surface optimization. Finally, an experiment on blisk blade polishing using ABFW on a five-axis polishing machine is carried out for confirmation. Results indicate that the surface quality of the blisk blade after polishing is significantly improved, with SR being less than 0.4 μm.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-017-0928-0