Loading…

HO-1 Induced by Cilostazol Protects Against TNF-α-associated Cytotoxicity via a PPAR-γ-dependent Pathway in Human Endothelial Cells

A large body of evidence has indicated that induction of endogenous antioxidative proteins seems to be a reasonable strategy for delaying the progression of cell injury. In our previous study, cilostazol was found to increase the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in synovi...

Full description

Saved in:
Bibliographic Details
Published in:The Korean journal of physiology & pharmacology 2011, 15(2), , pp.83-88
Main Authors: Park, So Youn, Bae, Jin Ung, Hong, Ki Whan, Kim, Chi Dae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A large body of evidence has indicated that induction of endogenous antioxidative proteins seems to be a reasonable strategy for delaying the progression of cell injury. In our previous study, cilostazol was found to increase the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in synovial cells. Thus, the present study was undertaken to examine whether cilostazol is able to counteract tumor necrosis factor-α (TNF-α)-induced cell death in endothelial cells via the induction of HO-1 expression. We exposed human umbilical vein endothelial cells (HUVECs) to TNF-α (50 ng/ml), with or without cilostazol (10 µM). Pretreatment with cilostazol markedly reduced TNF-α-induced viability loss in the HUVECs, which was reversed by zinc protoporphyrine IX (ZnPP), an inhibitor of HO-1. Moreover, cilostazol increased HO-1 protein and mRNA expression. Cilostazol-induced HO-1 induction was markedly attenuated not only by ZnPP but also by copper-protoporphyrin IX (CuPP). In an assay measuring peroxisome proliferator-activated receptor-γ (PPAR-γ) transcription activity, cilostazol directly increased PPAR-γ transcriptional activity which was completely abolished by HO-1 inhibitor. Furthermore, increased PPAR-γ activity by cilostazol and rosiglitazone was completely abolished in cells transfected with HO-1 siRNA. Taken together, these results indicate that cilostazol up-regulates HO-1 and protects cells against TNF-α-induced endothelial cytotoxicity via a PPAR-γ-dependent pathway.
ISSN:1226-4512
2093-3827
DOI:10.4196/kjpp.2011.15.2.83