Loading…
Assessment of the pedestrian friendliness of a vechicle using subsystem impact tests
Annually, thousands of unprotected pedestrians are killed or suffer serious injuries in accidents with moving vehicles. Numerous automobile organizations have performed research on pedestrian safety. The European Enhanced Vehicle- Safety Committee (EEVC), Working Group 17 (WG17) proposed three compo...
Saved in:
Published in: | International journal of automotive technology 2010, 11(1), , pp.67-73 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Annually, thousands of unprotected pedestrians are killed or suffer serious injuries in accidents with moving vehicles. Numerous automobile organizations have performed research on pedestrian safety. The European Enhanced Vehicle- Safety Committee (EEVC), Working Group 17 (WG17) proposed three component subsystem tests to evaluate the friendliness of a vehicle to pedestrians: the legform to hood test, the upper legform to bonnet leading edge test and the headform to bonnet top test. In assessing the pedestrian friendliness of a vehicle, the present study adopted the WG17 regulations of the three component subsystem tests. We herein describe in detail a finite element subsystem model built to analyze the pedestrian friendliness of a vehicle using LS-DYNA. The first objective of this study was to simulate these three component subsystem impact tests and evaluate car front aggressiveness. The second objective was to analyze the frontal structures of a vehicle and, based on the simulation results, identify dangerous areas and provide suggestions for vehicle front design that may decrease pedestrian injuries. The analysis of these models and the results obtained may be used to help evaluate the pedestrian friendliness of a vehicle and guide the future development of pedestrian-friendly vehicle technologies. |
---|---|
ISSN: | 1229-9138 1976-3832 |
DOI: | 10.1007/s12239-010-0009-1 |