Loading…

Use of data mining techniques to determine and predict length of stay of cardiac patients

Predicting the length of stay (LOS) of patients in a hospital is important in providing them with better services and higher satisfaction, as well as helping the hospital management plan and managing hospital resources as meticulously as possible. We propose applying data mining techniques to extrac...

Full description

Saved in:
Bibliographic Details
Published in:Healthcare informatics research 2013, 19(2), , pp.121-129
Main Authors: Hachesu, Peyman Rezaei, Ahmadi, Maryam, Alizadeh, Somayyeh, Sadoughi, Farahnaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predicting the length of stay (LOS) of patients in a hospital is important in providing them with better services and higher satisfaction, as well as helping the hospital management plan and managing hospital resources as meticulously as possible. We propose applying data mining techniques to extract useful knowledge and draw an accurate model to predict the LOS of heart patients. Data were collected from patients with coronary artery disease (CAD). The patient records of 4,948 patients who had suffered CAD were included in the analysis. The techniques used are classification with three algorithms, namely, decision tree, support vector machines (SVM), and artificial neural network (ANN). LOS is the target variable, and 36 input variables are used for prediction. A confusion matrix was obtained to calculate sensitivity, specificity, and accuracy. The overall accuracy of SVM was 96.4% in the training set. Most single patients (64.3%) had an LOS ≤5 days, whereas 41.2% of married patients had an LOS >10 days. Moreover, the study showed that comorbidity states, such as lung disorders and hemorrhage with drug consumption have an impact on long LOS. The presence of comorbidities, an ejection fraction
ISSN:2093-3681
2093-369X
DOI:10.4258/hir.2013.19.2.121