Loading…

Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars

To quantify the effect of two potassium levels (4.5 and 9.0 mM) on salt tolerance, we conducted a solution culture experiment using salt-tolerant (Nagina) and salt-sensitive (Peto-86) Solanum lycopersicum (tomato) cultivars grown under NaCl stress (0, 75, and 150 mM). Potassium is known to minimize...

Full description

Saved in:
Bibliographic Details
Published in:Horticulture, environment and biotechnology 2016, Environment, and Biotechnology, 57(3), , pp.248-258
Main Authors: Amjad, Muhammad, Akhtar, Javaid, Murtaza, Behzad, Abbas, Ghulam, Jawad, Husnain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To quantify the effect of two potassium levels (4.5 and 9.0 mM) on salt tolerance, we conducted a solution culture experiment using salt-tolerant (Nagina) and salt-sensitive (Peto-86) Solanum lycopersicum (tomato) cultivars grown under NaCl stress (0, 75, and 150 mM). Potassium is known to minimize oxidative stress and enhance photosynthesis in salt-stressed plants. A 30-day treatment with potassium, differentially increased stomatal conductance and transpiration, decreased oxidative stress, lowered the activities of antioxidant enzymes (i.e., superoxide dismutase, catalase, and glutathione reductase), increased leaf K + levels and the K + /Na + ratio, and improved the membrane stability index in the salt-tolerant and salt-sensitive tomato cultivars exposed to salt stress. The salt-sensitive cultivar had significantly higher malondialdehyde (MDA) concentrations and lower antioxidant enzyme activity than the salt-tolerant cultivar. These results indicate that potassium can be used to alleviate salt-induced oxidative stress and photosynthetic limitations in tomato plants and ultimately improve survival under salt stress.
ISSN:2211-3452
2211-3460
DOI:10.1007/s13580-016-0035-7