Loading…

ON THE STRUCTURE OF GRADED LIE TRIPLE SYSTEMS

We study the structure of an arbitrary graded Lie triple system ${\mathfrak T}$ with restrictions neither on the dimension nor the base field. We show that ${\mathfrak T}$ is of the form ${\mathfrak T}=U + \sum_{j}I_{j}$ with $U$ a linear subspace of the 1-homogeneous component ${\mathfrak T}_1$ and...

Full description

Saved in:
Bibliographic Details
Published in:Taehan Suhakhoe hoebo 2016, 53(1), , pp.163-180
Main Author: Martin, Antonio Jesus Calderon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the structure of an arbitrary graded Lie triple system ${\mathfrak T}$ with restrictions neither on the dimension nor the base field. We show that ${\mathfrak T}$ is of the form ${\mathfrak T}=U + \sum_{j}I_{j}$ with $U$ a linear subspace of the 1-homogeneous component ${\mathfrak T}_1$ and any $I_{j}$ a well described graded ideal of ${\mathfrak T}$, satisfying $[I_j,{\mathfrak T},I_k]=0$ if $j\neq k$. Under mild conditions, the simplicity of ${\mathfrak T}$ is characterized and it is shown that an arbitrary graded Lie triple system ${\mathfrak T}$ is the direct sum of the family of its minimal graded ideals, each one being a simple graded Lie triple system. KCI Citation Count: 3
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.2016.53.1.163