Loading…

Analysis of cepA encoding an efflux pump-like protein in Corynebacterium glutamicum

A gene encoding a homolog of purine efflux proteins of Escherichia coli and Bacillus subtilis was identified in the genome of Corynebacterium glutamicum and designated as cepA. The gene encoded a putative protein product, containing 12 transmembrane helixes, which is a typical feature of integral me...

Full description

Saved in:
Bibliographic Details
Published in:The journal of microbiology 2014, 52(4), , pp.278-283
Main Authors: Sim, Soo-Yeon, Hong, Eun-Ji, Kim, Younhee, Lee, Heung-Shick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A gene encoding a homolog of purine efflux proteins of Escherichia coli and Bacillus subtilis was identified in the genome of Corynebacterium glutamicum and designated as cepA. The gene encoded a putative protein product, containing 12 transmembrane helixes, which is a typical feature of integral membrane transport proteins. To elucidate the function of the gene, we constructed a cepA deletion mutant (ΔcepA) and a cepA-overexpressing strain and analyzed their physiological characteristics. The cepA gene could be deleted with no critical effect on cell growth. However, the cell yield of a ΔcepA strain was decreased by 10% as compared to that of a strain carrying a cepA-overexpression plasmid (P₁₈₀-cepA). Further analysis identified increased resistance of the P₁₈₀-cepA strain to the purine analogues 6-mercaptopurine and 6-mercaptoguanine, but not to 2-aminopurine and purine nucleoside analogues. Moreover, this strain showed increased resistance to the antibiotics nalidixic acid and ampicillin. Collectively, these data suggest that cepA is a novel multidrug resistance gene and probably functions in the efflux of toxic substances from the inside of cells to the environment, thus allowing cells to reach a higher cell yield.
ISSN:1225-8873
1976-3794
DOI:10.1007/s12275-014-3461-1