Loading…

Porphyromonas gingivalis-Derived Lipopolysaccharide-Mediated Activation of MAPK Signaling Regulates Inflammatory Response and Differentiation in Human Periodontal Ligament Fibroblasts

Porphyromonas gingivalis (P.g.), which is a potential pathogen for periodontal diseases, contains lipopolysaccharide (LPS), and this endotoxin stimulates a variety of cellular responses. At present, P.g.-derived LPS-induced cellular responses in human periodontal ligament fibroblasts (PDLFs) are not...

Full description

Saved in:
Bibliographic Details
Published in:The journal of microbiology 2012, 50(2), , pp.311-319
Main Authors: Seo, T.G., Dongguk University, Seoul, Republic of Korea, Cha, S.H., Dongguk University, Seoul, Republic of Korea, Kim, T.I., Seoul National University School of Dentistry, Seoul, Republic of Korea, Park, H.J., Seoul National University School of Dentistry, Seoul, Republic of Korea, Lee, J.S., Seoul National University School of Dentistry, Seoul, Republic of Korea, Woo, K.M., Seoul National University School of Dentistry, Seoul, Republic of Korea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Porphyromonas gingivalis (P.g.), which is a potential pathogen for periodontal diseases, contains lipopolysaccharide (LPS), and this endotoxin stimulates a variety of cellular responses. At present, P.g.-derived LPS-induced cellular responses in human periodontal ligament fibroblasts (PDLFs) are not well characterized. Here, we demonstrate that P.gderived LPS regulates inflammatory responses, apoptosis and differentiation in PDLFs. Interleukin-6 (IL-6) and -8 (IL-8) were effectively upregulated by treatment of P.g.-derived LPS, and we confirmed apoptosis markers including elevated cytochrome c levels, active caspase-3 and morphological change in the presence of P.g.-derived LPS. Moreover, when PDLFs were cultured with differentiation media, P.g.-derived LPS reduced the expression of differentiation marker genes, as well as reducing alkaline phosphatase (ALP) activity and mineralization. P.g.-derived LPS-mediated these cellular responses were effectively abolished by treatment of mitogen-activated protein kinase (MAPK) inhibitors. Taken together, our results suggest that P.g.-derived LPS regulates several cellular responses via activation of MAPK signaling pathways in PDLFs.
ISSN:1225-8873
1976-3794
DOI:10.1007/s12275-012-2146-x