Loading…

Development of hybrid shielding system for large-area Compton camera: A Monte Carlo study

Compton cameras using large scintillators have been developed for high imaging sensitivity. These scintillator-based Compton cameras, however, mainly due to relatively low energy resolution, suffer from undesired background-radiation signals, especially when radioactive materials’ activity is very l...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology 2020, 52(10), , pp.2361-2369
Main Authors: Kim, Jae Hyeon, Lee, Junyoung, Kim, Young-su, Lee, Hyun Su, Kim, Chan Hyeong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compton cameras using large scintillators have been developed for high imaging sensitivity. These scintillator-based Compton cameras, however, mainly due to relatively low energy resolution, suffer from undesired background-radiation signals, especially when radioactive materials’ activity is very low or their location is far from the Compton camera. To alleviate this problem for a large-size Compton camera, in the present study, a hybrid-type shielding system was designed that combines an active shield with a veto detector and a passive shield that surrounds the active shield. Then, the performance of the hybrid shielding system was predicted, by Monte Carlo radiation transport simulation using Geant4, in terms of minimum detectable activity (MDA), signal-to-noise ratio (SNR), and image resolution. Our simulation results show that, for the most cases, the hybrid shielding system significantly improves the performance of the large-size Compton camera. For the cases investigated in the present study, the use of the shielding system decreased the MDA by about 1.4, 1.6, and 1.3 times, increased the SNR by 1.2–1.9, 1.1–1.7, and 1.3–2.1 times, and improved the image resolution (i.e., reduced the FWHM) by 7–8, 1–6, and 3–5% for 137Cs, 60Co, and 131I point source located at 1–5 m from the imaging system, respectively.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2020.04.003