Loading…

Analysis of Smartphone Recordings in Time, Frequency, and Cepstral Domains to Classify Parkinson's Disease

Parkinson's disease (PD) is the second most common neurodegenerative disorder; it affects more than 10 million people worldwide. Detecting PD usually requires a professional assessment by an expert, and investigation of the voice as a biomarker of the disease could be effective in speeding up t...

Full description

Saved in:
Bibliographic Details
Published in:Healthcare informatics research 2020, 26(4), , pp.274-283
Main Authors: Tougui, Ilias, Jilbab, Abdelilah, Mhamdi, Jamal El
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Parkinson's disease (PD) is the second most common neurodegenerative disorder; it affects more than 10 million people worldwide. Detecting PD usually requires a professional assessment by an expert, and investigation of the voice as a biomarker of the disease could be effective in speeding up the diagnostic process. We present our methodology in which we distinguish PD patients from healthy controls (HC) using a large sample of 18,210 smartphone recordings. Those recordings were processed by an audio processing technique to create a final dataset of 80,594 instances and 138 features from the time, frequency, and cepstral domains. This dataset was preprocessed and normalized to create baseline machinelearning models using four classifiers, namely, linear support vector machine, K-nearest neighbor, random forest, and extreme gradient boosting (XGBoost). We divided our dataset into training and held-out test sets. Then we used stratified 5-fold cross-validation and four performance measures: accuracy, sensitivity, specificity, and F1-score to assess the performance of the models. We applied two feature selection methods, analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO), to reduce the dimensionality of the dataset by selecting the best subset of features that maximizes the performance of the classifiers. LASSO outperformed ANOVA with almost the same number of features. With 33 features, XGBoost achieved a maximum accuracy of 95.31% on training data, and 95.78% by predicting unseen data. Developing a smartphone-based system that implements machine-learning techniques is an effective way to diagnose PD using the voice as a biomarker.
ISSN:2093-3681
2093-369X
2093-369X
DOI:10.4258/hir.2020.26.4.274