Loading…
머신러닝을 이용한 미숙아의 재원일수 예측 융복합 연구
본 연구는 미숙아의 재원일수 예측 모형을 머신러닝 기법을 통해 개발하기 위해 수행 되었다. 모형 개발을 위해 질병관리본부에서 수집한 퇴원손상심층조사 자료의 2011년부터 2016년까지 퇴원한 미숙아 6,149건을 이용하였다. 입 원 초기 신경망 모형은 설명력(R²)이 0.75로 다른 모형에 비해 우수 하였다. 입원 초기 변수에 임상진단을 CCS(Clinical class ification software)로 변환하여 추가 투입한 모형은 큐비스트(Cubist) 모형의 설명력(R²)이 0.81로 랜덤 포레스 트(Random Forest...
Saved in:
Published in: | 디지털융복합연구 2021, 19(7), , pp.271-282 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | Korean |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 본 연구는 미숙아의 재원일수 예측 모형을 머신러닝 기법을 통해 개발하기 위해 수행 되었다. 모형 개발을 위해 질병관리본부에서 수집한 퇴원손상심층조사 자료의 2011년부터 2016년까지 퇴원한 미숙아 6,149건을 이용하였다. 입 원 초기 신경망 모형은 설명력(R²)이 0.75로 다른 모형에 비해 우수 하였다. 입원 초기 변수에 임상진단을 CCS(Clinical class ification software)로 변환하여 추가 투입한 모형은 큐비스트(Cubist) 모형의 설명력(R²)이 0.81로 랜덤 포레스 트(Random Forests), 그라디언트 부스트(Gradient boost), 신경망(neural network), 벌점화 회귀(Penalty regression) 모형에 비해 성능이 우수 하였다. 본 연구는 전국단위 데이터를 이용한 미숙아의 재원일수 예측 모형을 머신러닝을 통해 제시하고 그 활용 가능성을 확인하였다. 하지만 임상정보, 부모정보 등 데이터의 한계로 향후 성능 향 상을 위한 추가 연구가 필요하다. |
---|---|
ISSN: | 2713-6434 2713-6442 |
DOI: | 10.14400/JDC.2021.19.7.271 |