Loading…

Effects of Advanced Glycation End Products on Differentiation and Function of Osteoblasts and Osteoclasts

Risk of fragility fractures increases in patients with diabetes mellitus, independent of bone mineral density. In the present study, the effects of advanced glycation end products (AGEs) on differentiation and function of osteoblasts and osteoclasts were investigated. AGEs and 25 mM glucose were adm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Korean medical science 2021, 36(37), , pp.1-11
Main Authors: Park, So Young, Choi, Kyoung Hee, Jun, Ji Eun, Chung, Ho Yeon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Risk of fragility fractures increases in patients with diabetes mellitus, independent of bone mineral density. In the present study, the effects of advanced glycation end products (AGEs) on differentiation and function of osteoblasts and osteoclasts were investigated. AGEs and 25 mM glucose were administered to marrow-derived macrophages and MCT3T3-E1 cells. The effects of AGEs on osteoclast differentiation was investigated using tartrate-resistant acid phosphatase (TRAP) assay. The effects of AGEs on osteoblast differentiation was investigated using alkaline phosphatase (ALP) activity and bone nodule formation assays. Expression of osteoclast-specific and osteoblast-specific genes and effects on cell signaling pathways associated with cell differentiation were analyzed using reverse transcription polymerase chain reaction and western blotting. AGEs significantly decreased TRAP-positive multinucleated cell formation in receptor activator of nuclear factor-κB ligand-induced marrow-derived macrophages in a dose-dependent manner. AGEs suppressed the expression of osteoclast-specific genes, JNK, p38, AKT, intercellular adhesion molecule 1, and lymphocyte function-associated antigen 1 in marrow-derived macrophages. AGEs decreased ALP activity and showed a tendency to decrease bone nodule formation in MC3T3-E1 cells. AGEs suppressed the expression of osteoblast-specific genes, lysyl hydroxylase and lysyl oxidase in MC3T3-E1 cells. AGEs suppressed differentiation and function of osteoclasts and osteoblasts, and collagen cross-linking activity. It suggests that AGE may induce bone fragility through low bone turnover and deterioration of bone quality.
ISSN:1011-8934
1598-6357
DOI:10.3346/JKMS.2021.36.E239