Loading…

Further results on biases in integer partitions

Let $p_{a,b,m}(n)$ be the number of integer partitions of $n$ with more parts congruent to $a$ modulo $m$ than parts congruent to $b$ modulo $m$. We prove that $p_{a,b,m}(n)\ge p_{b,a,m}(n)$ whenever $1\le a

Saved in:
Bibliographic Details
Published in:Taehan Suhakhoe hoebo 2022, 59(1), , pp.111-117
Main Author: Shane Chern
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $p_{a,b,m}(n)$ be the number of integer partitions of $n$ with more parts congruent to $a$ modulo $m$ than parts congruent to $b$ modulo $m$. We prove that $p_{a,b,m}(n)\ge p_{b,a,m}(n)$ whenever $1\le a
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b210126