Loading…
Further results on biases in integer partitions
Let $p_{a,b,m}(n)$ be the number of integer partitions of $n$ with more parts congruent to $a$ modulo $m$ than parts congruent to $b$ modulo $m$. We prove that $p_{a,b,m}(n)\ge p_{b,a,m}(n)$ whenever $1\le a
Saved in:
Published in: | Taehan Suhakhoe hoebo 2022, 59(1), , pp.111-117 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $p_{a,b,m}(n)$ be the number of integer partitions of $n$ with more parts congruent to $a$ modulo $m$ than parts congruent to $b$ modulo $m$. We prove that $p_{a,b,m}(n)\ge p_{b,a,m}(n)$ whenever $1\le a |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b210126 |