Loading…
Bootstrap based goodness-of-fit tests for binary multivariate regression models
We consider a binary multivariate regression model where the conditional expectation of a binary variable given a higher-dimensional input variable belongs to a parametric family. Based on this, we introduce a model-based bootstrap (MBB) for higher-dimensional input variables. This test can be used...
Saved in:
Published in: | Journal of the Korean Statistical Society 2022, 51(1), , pp.308-335 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a binary multivariate regression model where the conditional expectation of a binary variable given a higher-dimensional input variable belongs to a parametric family. Based on this, we introduce a model-based bootstrap (MBB) for higher-dimensional input variables. This test can be used to check whether a sequence of independent and identically distributed observations belongs to such a parametric family. The approach is based on the empirical residual process introduced by Stute (Ann Statist 25:613–641, 1997). In contrast to Stute and Zhu’s approach (2002) Stute & Zhu (Scandinavian J Statist 29:535–545, 2002), a transformation is not required. Thus, any problems associated with non-parametric regression estimation are avoided. As a result, the MBB method is much easier for users to implement. To illustrate the power of the MBB based tests, a small simulation study is performed. Compared to the approach of Stute & Zhu (Scandinavian J Statist 29:535–545, 2002), the simulations indicate a slightly improved power of the MBB based method. Finally, both methods are applied to a real data set. |
---|---|
ISSN: | 1226-3192 2005-2863 |
DOI: | 10.1007/s42952-021-00142-4 |