Loading…
태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델
자외선은 노출 정도에 따라 인체에 유익 또는 유해한 영향을 미치므로 개인별 적정 노출을 위해서는 정확한 자외선(UV) 정보가 필요하다. 국내의 경우 기상청에서 생활기상정보의 한 요소로 자외선 정보를 제공하고 있으나 지역별 자외선 지수(UVI, Ultraviolet Index)로 사용자 위치의 정확한 UVI를 제공하지는 못하고 있다. 일부에서는 정확한 UVI의 취득을 위해 직접 계측기를 운용하지만 비용이나 편의성에 문제가 있고, 태양의 복사량과 운량 등 주변 환경요소를 통해 자외선 양을 추정하는 연구도 소개되었으나 개인별 서비스 방법...
Saved in:
Published in: | Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2022, 23(2), , pp.29-35 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | Korean |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 자외선은 노출 정도에 따라 인체에 유익 또는 유해한 영향을 미치므로 개인별 적정 노출을 위해서는 정확한 자외선(UV) 정보가 필요하다. 국내의 경우 기상청에서 생활기상정보의 한 요소로 자외선 정보를 제공하고 있으나 지역별 자외선 지수(UVI, Ultraviolet Index)로 사용자 위치의 정확한 UVI를 제공하지는 못하고 있다. 일부에서는 정확한 UVI의 취득을 위해 직접 계측기를 운용하지만 비용이나 편의성에 문제가 있고, 태양의 복사량과 운량 등 주변 환경요소를 통해 자외선 양을 추정하는 연구도 소개되었으나 개인별 서비스 방법을 제시하지는 못하였다. 이에 본 논문에서는 각 개인별 위치에서의 정확한 UVI 제공을 위한 태양객체 정보와 태양광 특성을 이용한 UVI 산출 딥러닝 모델을 제안한다. 기 수집한 하늘이미지 및 태양광 특성을 분석하여 태양의 위치 및 크기, 조도 등 UVI와 상관도가 높은 요소들을 선정한 후 DNN 모델을 위한 데이터 셋을 구성한다. 이후 하늘이미지로부터 Mask R-CNN을 통해 추출한 태양객체 정보와 태양광 특성을 입력하여 UVI를 산출하는 DNN 모델을 구현한다. 국내 UVI 권고기준을 고려, UVI 8이상과 미만인 날에 대한 성능평가에서는 기준장비 대비 MAE 0.26의 범위 내 정확한 UVI의 산출이 가능하였다.
UV rays have beneficial or harmful effects on the human body depending on the degree of exposure. An accurate UV information is required for proper exposure to UV rays per individual. The UV rays’ information is provided by the Korea Meteorological Administration as one component of daily weather information in Korea. However, it does not provide an accurate UVI at the user’s location based on the region’s Ultraviolet index. Some operate measuring instrument to obtain an accurate UVI, but it would be costly and inconvenient. Studies which assumed the UVI through environmental factors such as solar radiation and amount of cloud have been introduced, but those studies also could not provide service to individual. Therefore, this paper proposes a deep learning model to calculate UVI using solar object information and sunlight characteristics to provide an accurate UVI at individual location. After selecting the factors, which were considered as highly correlated with UVI such as location and size and illuminance of sun and which were obtained through the analysis of sky images and solar characteristics data, a data set for DNN model was constructed. A DNN model that calculates the UVI was finally realized by entering the solar object information and sunlight characteristics extracted through Mask R-CNN. In consideration of the domestic UVI recommendation standards, it was possible to accurately calculate UVI within the range of MAE 0.26 compared to the standard equipment in the performance evaluation for days with UVI above and below 8. |
---|---|
ISSN: | 1598-0170 2287-1136 |