Loading…
The characterisation of $BMO$ via commutators in variable Lebesgue spaces on stratified groups
Let $T$ be a bilinear Calder\'{o}n-Zygmund operator, $$b\in \cup_{q>1}L_{loc}^{q}(G).$$ We firstly obtain a constructive proof of the weak factorisation of Hardy spaces. Then we establish the characterization of $BMO$ spaces by the boundedness of the commutator $[b, T]_{j}$ in variable Lebes...
Saved in:
Published in: | Taehan Suhakhoe hoebo 2022, 59(3), , pp.547-566 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $T$ be a bilinear Calder\'{o}n-Zygmund operator, $$b\in \cup_{q>1}L_{loc}^{q}(G).$$ We firstly obtain a constructive proof of the weak factorisation of Hardy spaces. Then we establish the characterization of $BMO$ spaces by the boundedness of the commutator $[b, T]_{j}$ in variable Lebesgue spaces. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b201019 |