Loading…

Dissolution of Uranium-Bearing Minerals and Mobilization of Uranium by Organic Ligands in a Biologically Reduced Sediment

The stability and mobility of uranium (U) is a concern following its reductive precipitation or immobilization by techniques such as bioremediation at contaminated sites. In this study, the influences of complexing organic ligands such as citrate and ethylenediaminetetraacetate (EDTA) on the mobiliz...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2011-04, Vol.45 (7), p.2994-2999
Main Authors: Luo, Wensui, Gu, Baohua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stability and mobility of uranium (U) is a concern following its reductive precipitation or immobilization by techniques such as bioremediation at contaminated sites. In this study, the influences of complexing organic ligands such as citrate and ethylenediaminetetraacetate (EDTA) on the mobilization of U were investigated in both batch and column flow systems using a contaminated and bioreduced sediment. Results indicate that both reduced U(IV) and oxidized U(VI) in the sediment can be effectively mobilized with the addition of EDTA or citrate under anaerobic conditions. The dissolution and mobilization of U appear to be correlated to the dissolution of iron (Fe)- or aluminum (Al)-bearing minerals, with EDTA being more effective (with R 2 ≥ 0.89) than citrate (R 2 < 0.60) in dissolving these minerals. The column flow experiments confirm that U, Fe, and Al can be mobilized by these ligands under anoxic conditions, although the cumulative amounts of U removal constituted ∼0.1% of total U present in this sediment following a limited period of leaching. This study concludes that the presence of complexing organic ligands may pose a long-term concern by slowly dissolving U-bearing minerals and mobilizing U even under a strict anaerobic environment.
ISSN:0013-936X
1520-5851
DOI:10.1021/es103073u