Loading…

Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics

We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice-sheet and ice-shelf dynamics. Most existing ice-sheet numerical models use grid-based Eulerian discretizations, and are usually restricted to shallow ice-sheet and ice-shelf approximatio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2013-06, Vol.242 (C), p.828-842
Main Authors: Pan, W., Tartakovsky, A.M., Monaghan, J.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice-sheet and ice-shelf dynamics. Most existing ice-sheet numerical models use grid-based Eulerian discretizations, and are usually restricted to shallow ice-sheet and ice-shelf approximations of the momentum- conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum-conservation equation. Numerical accuracy of the proposed SPH model is first verified by simulating Poiseuille flow, a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding-line dynamics of a ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding-line dynamics. The non-Newtonian constitutive model is based on Glen’s law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2012.10.027