Loading…
Redox Behavior of Uranium at the Nanoporous Aluminum Oxide-Water Interface: Implications for Uranium Remediation
Sorption–desorption experiments show that the majority (ca. 80–90%) of U(VI) presorbed to mesoporous and nanoporous alumina could not be released by extended (2 week) extraction with 50 mM NaHCO3 in contrast with non-nanoporous α alumina. The extent of reduction of U(VI) presorbed to aluminum oxides...
Saved in:
Published in: | Environmental science & technology 2012-07, Vol.46 (13), p.7301-7309 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sorption–desorption experiments show that the majority (ca. 80–90%) of U(VI) presorbed to mesoporous and nanoporous alumina could not be released by extended (2 week) extraction with 50 mM NaHCO3 in contrast with non-nanoporous α alumina. The extent of reduction of U(VI) presorbed to aluminum oxides was semiquantitatively estimated by comparing the percentages of uranium desorbed by anoxic sodium bicarbonate between AH2DS-reacted and unreacted control samples. X-ray absorption spectroscopy confirmed that U(VI) presorbed to non-nanoporous alumina was rapidly and completely reduced to nanoparticulate uraninite by AH2DS, whereas reduction of U(VI) presorbed to nanoporous alumina was slow and incomplete ( |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es2044163 |