Loading…
The origin of diffusion: the case of non-chaotic systems
We investigate the origin of diffusion in non-chaotic systems. As an example, we consider 1D map models whose slope is everywhere 1 (therefore the Lyapunov exponent is zero) but with random quenched discontinuities and quasi-periodic forcing. The models are constructed as non-chaotic approximations...
Saved in:
Published in: | Physica. D 2003-06, Vol.180 (3), p.129-139 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the origin of diffusion in non-chaotic systems. As an example, we consider 1D map models whose slope is everywhere 1 (therefore the Lyapunov exponent is zero) but with random quenched discontinuities and quasi-periodic forcing. The models are constructed as non-chaotic approximations of chaotic maps showing deterministic diffusion, and represent one-dimensional versions of a Lorentz gas with polygonal obstacles (e.g., the Ehrenfest wind-tree model). In particular, a simple construction shows that these maps define non-chaotic billiards in space–time. The models exhibit, in a wide range of the parameters, the same diffusive behavior of the corresponding chaotic versions. We present evidence of two sufficient ingredients for diffusive behavior in one-dimensional, non-chaotic systems: (i) a finite size, algebraic instability mechanism; (ii) a mechanism that suppresses periodic orbits. |
---|---|
ISSN: | 0167-2789 1872-8022 |
DOI: | 10.1016/S0167-2789(03)00051-4 |