Loading…
Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels
Neurofilaments are intermediate filaments assembled from the subunits neurofilament-low, neurofilament-medium and neurofilament-high. In axons, parallel neurofilaments form a nematic liquid-crystal hydrogel with network structure arising from interactions between the neurofilaments’ C-terminal sidea...
Saved in:
Published in: | Nature communications 2013-07, Vol.4 (1), p.2224-2224, Article 2224 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neurofilaments are intermediate filaments assembled from the subunits neurofilament-low, neurofilament-medium and neurofilament-high. In axons, parallel neurofilaments form a nematic liquid-crystal hydrogel with network structure arising from interactions between the neurofilaments’ C-terminal sidearms. Here we report, using small-angle X-ray-scattering, polarized-microscopy and rheometry, that with decreasing ionic strength, neurofilament-low–high, neurofilament-low–medium and neurofilament-low–medium–high hydrogels transition from the nematic hydrogel to an isotropic hydrogel (with random, crossed-filament orientation) and to an unexpected new re-entrant liquid-crystal hydrogel with parallel filaments—the bluish-opaque hydrogel—with notable mechanical and water retention properties reminiscent of crosslinked hydrogels. Significantly, the isotropic gel phase stability is sidearm-dependent: neurofilament-low–high hydrogels exhibit a wide ionic strength range, neurofilament-low–medium hydrogels a narrow ionic strength range, whereas neurofilament-low hydrogels lack the isotropic gel phase. This suggests a dominant regulatory role for neurofilament-high sidearms in filament reorientation plasticity, facilitating organelle transport in axons. Neurofilament-inspired biomimetic hydrogels should therefore exhibit remarkable structure-dependent moduli and slow and fast water-release properties.
Neurofilaments are intermediate filaments that form nematic liquid-crystal hydrogels in axons. Here, the authors show that upon decreasing ionic strength the hydrogels transform to isotropic and re-entrant birefringent hydrogels, with notable mechanical and water retention properties. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms3224 |