Loading…
A Stochastic Diffusion Process for the Dirichlet Distribution
The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability of N coupled stochastic variables with the Dirichlet distribution as its asymptotic solution. To ensure a bounded sample space, a coupled nonlinear diffusion process is requ...
Saved in:
Published in: | International Journal of Stochastic Analysis 2013, Vol.2013 (2013), p.166-172 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability of N coupled stochastic variables with the Dirichlet distribution as its asymptotic solution. To ensure a bounded sample space, a coupled nonlinear diffusion process is required: the Wiener processes in the equivalent system of stochastic differential equations are multiplicative with coefficients dependent on all the stochastic variables. Individual samples of a discrete ensemble, obtained from the stochastic process, satisfy a unit-sum constraint at all times. The process may be used to represent realizations of a fluctuating ensemble of N variables subject to a conservation principle. Similar to the multivariate Wright-Fisher process, whose invariant is also Dirichlet, the univariate case yields a process whose invariant is the beta distribution. As a test of the results, Monte Carlo simulations are used to evolve numerical ensembles toward the invariant Dirichlet distribution. |
---|---|
ISSN: | 2090-3332 2090-3340 |
DOI: | 10.1155/2013/842981 |