Loading…

Electrophoretic mobility of sarcoplasmic reticulum vesicles is determined by amino acids of A+P+N domains of Ca2+-ATPase

Establishing the origin of electrophoretic mobility of sarcoplasmic reticulum (SR) vesicles is the primary goal of this work. It was found that the electrophoretic mobility originates from ionizable amino acids of cytoplasmic domains of the Ca2+-ATPase, the calcium pump of SR. The mobility was measu...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2010-09, Vol.1798 (9), p.1689-1697
Main Authors: Smejtek, Pavel, Satterfield, Laura E, Word, Robert C, Abramson, Jonathan J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Establishing the origin of electrophoretic mobility of sarcoplasmic reticulum (SR) vesicles is the primary goal of this work. It was found that the electrophoretic mobility originates from ionizable amino acids of cytoplasmic domains of the Ca2+-ATPase, the calcium pump of SR. The mobility was measured at pH 4.0, 4.7, 5.0, 6.0, 7.5, and 9.0 in the region of ionic strength from 0.05 to 0.2 M. Mobility measurements were supplemented by studies of SR vesicles by photoelectron microscopy. The median diameter of SR vesicles was 260 nm. Ca2+-ATPases were not resolved. The mobility data were standardized by interpolation to a reference ionic strength of 0.1M. The mobility of the SR vesicles is determined by the charge of the Ca2+-ATPase. It is due to the ionizable amino acids selected from the amino acid sequence of SERCA1a Ca2+-ATPase. The pH dependence of charge residing in various domains of Ca2+-ATPase was computed using pKa values in free water. The charge correlated with measured mobility. It was shown that a linear relationship exists between the mobility of the SR vesicles, mu, and the total computed charge, Q, on three cytoplasmic domains of Ca2+-ATPase: A, P, and N. It is given by mu=alpha+betaQ where the fitted values beta=(0.043+/-0.002) x 10(-8) m(2) V(-1) s(-1) e(-1) and alpha=(0.16+/-0.02) x 10(-8) m(2) V(-1) s(-1). Since beta and alpha values do not change from pH 4 to pH 9, one concludes that the hydrodynamic friction of the cytoplasmic domains of SR is independent of their charge.
ISSN:0006-3002
0005-2736
1879-2642
DOI:10.1016/j.bbamem.2010.05.003