Loading…

Topological Effects on Globular Protein-ELP Fusion Block Copolymer Self-Assembly

Perfectly defined, monodisperse fusion protein block copolymers of a thermoresponsive coil‐like protein, ELP, and a globular protein, mCherry, are demonstrated to act as fully biosynthetic analogues to protein‐polymer conjugates that can self‐assemble into biofunctional nanostructures such as hexago...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2015-02, Vol.25 (5), p.729-738
Main Authors: Qin, Guokui, Glassman, Matthew J., Lam, Christopher N., Chang, Dongsook, Schaible, Eric, Hexemer, Alexander, Olsen, Bradley D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4533-26d9a936ec017108c592f5d206f9aa2da7bafc32d4feb885224dcff7c18e35983
cites cdi_FETCH-LOGICAL-c4533-26d9a936ec017108c592f5d206f9aa2da7bafc32d4feb885224dcff7c18e35983
container_end_page 738
container_issue 5
container_start_page 729
container_title Advanced functional materials
container_volume 25
creator Qin, Guokui
Glassman, Matthew J.
Lam, Christopher N.
Chang, Dongsook
Schaible, Eric
Hexemer, Alexander
Olsen, Bradley D.
description Perfectly defined, monodisperse fusion protein block copolymers of a thermoresponsive coil‐like protein, ELP, and a globular protein, mCherry, are demonstrated to act as fully biosynthetic analogues to protein‐polymer conjugates that can self‐assemble into biofunctional nanostructures such as hexagonal and lamellar phases in concentrated solutions. The phase behavior of two mCherry‐ELP fusions, E10‐mCherry‐E10 and E20‐mCherry, is investigated to compare linear and bola fusion self‐assembly both in diluted and concentrated aqueous solution. In dilute solution, the molecular topology impacts the stability of micelles formed above the thermal transition temperature of the ELP block, with the diblock forming micelles and the bola forming unstable aggregates. Despite the chemical similarity of the two protein blocks, the materials order into block copolymer‐like nanostructures across a wide range of concentrations at 30 wt% and above, with the bola fusion having a lower order‐disorder transition concentration than the diblock fusion. The topology of the molecule has a large impact on the type of nanostructure formed, with the two fusions forming phases in the opposite order as a function of temperature and concentration. This new system provides a rich landscape to explore the capabilities of fusion architecture to control supramolecular assemblies for bioactive materials. Self‐assembly of fusion proteins containing a folded globular protein into solid nanomaterials is demonstrated for the first time. Using model molecules containing ELP and mCherry, the ability to tune nanostructure is demonstrated through control over the fusion topology. As fully biosynthetic analogues to protein‐polymer conjugates, the mCherry‐ELP fusions provide an efficient route to introduce complex biological functionality into supramolecular assemblies.
doi_str_mv 10.1002/adfm.201403453
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1229476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669884419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4533-26d9a936ec017108c592f5d206f9aa2da7bafc32d4feb885224dcff7c18e35983</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEqWwMkdMLCn-SBx7LKUpSAUqtahsluvYYOrExU4F_fekCqrYmO6ke57T3RtFlxAMIADoRpS6GiAAU4DTDB9FPUggSTBA9PjQw9fT6CyEDwBgnuO0F80WbuOsezNS2HistZJNiF0dT6xbba3w8cy7Rpk6GU9ncbENpp3dWifX8Wgv7irl47myOhmGoKqV3Z1HJ1rYoC5-az96KcaL0X0yfZ48jIbTRLbH4QSRkgmGiZLtJRBQmTGksxIBopkQqBT5SmiJUZlqtaI0Qygtpda5hFThjFHcj666vS40hgdpGiXfpavr9gMOEWJpTlrouoM23n1uVWh4ZYJU1opauW3gkBBGaZpC1qKDDpXeheCV5htvKuF3HAK-z5fv8-WHfFuBdcKXsWr3D82Hd8XjXzfpXBMa9X1whV9zkuM848unCV8u2YKyYs6X-AeABI2S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669884419</pqid></control><display><type>article</type><title>Topological Effects on Globular Protein-ELP Fusion Block Copolymer Self-Assembly</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Qin, Guokui ; Glassman, Matthew J. ; Lam, Christopher N. ; Chang, Dongsook ; Schaible, Eric ; Hexemer, Alexander ; Olsen, Bradley D.</creator><creatorcontrib>Qin, Guokui ; Glassman, Matthew J. ; Lam, Christopher N. ; Chang, Dongsook ; Schaible, Eric ; Hexemer, Alexander ; Olsen, Bradley D. ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Perfectly defined, monodisperse fusion protein block copolymers of a thermoresponsive coil‐like protein, ELP, and a globular protein, mCherry, are demonstrated to act as fully biosynthetic analogues to protein‐polymer conjugates that can self‐assemble into biofunctional nanostructures such as hexagonal and lamellar phases in concentrated solutions. The phase behavior of two mCherry‐ELP fusions, E10‐mCherry‐E10 and E20‐mCherry, is investigated to compare linear and bola fusion self‐assembly both in diluted and concentrated aqueous solution. In dilute solution, the molecular topology impacts the stability of micelles formed above the thermal transition temperature of the ELP block, with the diblock forming micelles and the bola forming unstable aggregates. Despite the chemical similarity of the two protein blocks, the materials order into block copolymer‐like nanostructures across a wide range of concentrations at 30 wt% and above, with the bola fusion having a lower order‐disorder transition concentration than the diblock fusion. The topology of the molecule has a large impact on the type of nanostructure formed, with the two fusions forming phases in the opposite order as a function of temperature and concentration. This new system provides a rich landscape to explore the capabilities of fusion architecture to control supramolecular assemblies for bioactive materials. Self‐assembly of fusion proteins containing a folded globular protein into solid nanomaterials is demonstrated for the first time. Using model molecules containing ELP and mCherry, the ability to tune nanostructure is demonstrated through control over the fusion topology. As fully biosynthetic analogues to protein‐polymer conjugates, the mCherry‐ELP fusions provide an efficient route to introduce complex biological functionality into supramolecular assemblies.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201403453</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Block copolymers ; Forming ; fusion proteins ; Mathematical models ; mCherry-ELPs ; Nanostructure ; nanostructure formation ; Phases ; Proteins ; Self assembly ; Topology</subject><ispartof>Advanced functional materials, 2015-02, Vol.25 (5), p.729-738</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4533-26d9a936ec017108c592f5d206f9aa2da7bafc32d4feb885224dcff7c18e35983</citedby><cites>FETCH-LOGICAL-c4533-26d9a936ec017108c592f5d206f9aa2da7bafc32d4feb885224dcff7c18e35983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1229476$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Guokui</creatorcontrib><creatorcontrib>Glassman, Matthew J.</creatorcontrib><creatorcontrib>Lam, Christopher N.</creatorcontrib><creatorcontrib>Chang, Dongsook</creatorcontrib><creatorcontrib>Schaible, Eric</creatorcontrib><creatorcontrib>Hexemer, Alexander</creatorcontrib><creatorcontrib>Olsen, Bradley D.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Topological Effects on Globular Protein-ELP Fusion Block Copolymer Self-Assembly</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Perfectly defined, monodisperse fusion protein block copolymers of a thermoresponsive coil‐like protein, ELP, and a globular protein, mCherry, are demonstrated to act as fully biosynthetic analogues to protein‐polymer conjugates that can self‐assemble into biofunctional nanostructures such as hexagonal and lamellar phases in concentrated solutions. The phase behavior of two mCherry‐ELP fusions, E10‐mCherry‐E10 and E20‐mCherry, is investigated to compare linear and bola fusion self‐assembly both in diluted and concentrated aqueous solution. In dilute solution, the molecular topology impacts the stability of micelles formed above the thermal transition temperature of the ELP block, with the diblock forming micelles and the bola forming unstable aggregates. Despite the chemical similarity of the two protein blocks, the materials order into block copolymer‐like nanostructures across a wide range of concentrations at 30 wt% and above, with the bola fusion having a lower order‐disorder transition concentration than the diblock fusion. The topology of the molecule has a large impact on the type of nanostructure formed, with the two fusions forming phases in the opposite order as a function of temperature and concentration. This new system provides a rich landscape to explore the capabilities of fusion architecture to control supramolecular assemblies for bioactive materials. Self‐assembly of fusion proteins containing a folded globular protein into solid nanomaterials is demonstrated for the first time. Using model molecules containing ELP and mCherry, the ability to tune nanostructure is demonstrated through control over the fusion topology. As fully biosynthetic analogues to protein‐polymer conjugates, the mCherry‐ELP fusions provide an efficient route to introduce complex biological functionality into supramolecular assemblies.</description><subject>Block copolymers</subject><subject>Forming</subject><subject>fusion proteins</subject><subject>Mathematical models</subject><subject>mCherry-ELPs</subject><subject>Nanostructure</subject><subject>nanostructure formation</subject><subject>Phases</subject><subject>Proteins</subject><subject>Self assembly</subject><subject>Topology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEqWwMkdMLCn-SBx7LKUpSAUqtahsluvYYOrExU4F_fekCqrYmO6ke57T3RtFlxAMIADoRpS6GiAAU4DTDB9FPUggSTBA9PjQw9fT6CyEDwBgnuO0F80WbuOsezNS2HistZJNiF0dT6xbba3w8cy7Rpk6GU9ncbENpp3dWifX8Wgv7irl47myOhmGoKqV3Z1HJ1rYoC5-az96KcaL0X0yfZ48jIbTRLbH4QSRkgmGiZLtJRBQmTGksxIBopkQqBT5SmiJUZlqtaI0Qygtpda5hFThjFHcj666vS40hgdpGiXfpavr9gMOEWJpTlrouoM23n1uVWh4ZYJU1opauW3gkBBGaZpC1qKDDpXeheCV5htvKuF3HAK-z5fv8-WHfFuBdcKXsWr3D82Hd8XjXzfpXBMa9X1whV9zkuM848unCV8u2YKyYs6X-AeABI2S</recordid><startdate>20150204</startdate><enddate>20150204</enddate><creator>Qin, Guokui</creator><creator>Glassman, Matthew J.</creator><creator>Lam, Christopher N.</creator><creator>Chang, Dongsook</creator><creator>Schaible, Eric</creator><creator>Hexemer, Alexander</creator><creator>Olsen, Bradley D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150204</creationdate><title>Topological Effects on Globular Protein-ELP Fusion Block Copolymer Self-Assembly</title><author>Qin, Guokui ; Glassman, Matthew J. ; Lam, Christopher N. ; Chang, Dongsook ; Schaible, Eric ; Hexemer, Alexander ; Olsen, Bradley D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4533-26d9a936ec017108c592f5d206f9aa2da7bafc32d4feb885224dcff7c18e35983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Block copolymers</topic><topic>Forming</topic><topic>fusion proteins</topic><topic>Mathematical models</topic><topic>mCherry-ELPs</topic><topic>Nanostructure</topic><topic>nanostructure formation</topic><topic>Phases</topic><topic>Proteins</topic><topic>Self assembly</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Guokui</creatorcontrib><creatorcontrib>Glassman, Matthew J.</creatorcontrib><creatorcontrib>Lam, Christopher N.</creatorcontrib><creatorcontrib>Chang, Dongsook</creatorcontrib><creatorcontrib>Schaible, Eric</creatorcontrib><creatorcontrib>Hexemer, Alexander</creatorcontrib><creatorcontrib>Olsen, Bradley D.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Guokui</au><au>Glassman, Matthew J.</au><au>Lam, Christopher N.</au><au>Chang, Dongsook</au><au>Schaible, Eric</au><au>Hexemer, Alexander</au><au>Olsen, Bradley D.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Effects on Globular Protein-ELP Fusion Block Copolymer Self-Assembly</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2015-02-04</date><risdate>2015</risdate><volume>25</volume><issue>5</issue><spage>729</spage><epage>738</epage><pages>729-738</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Perfectly defined, monodisperse fusion protein block copolymers of a thermoresponsive coil‐like protein, ELP, and a globular protein, mCherry, are demonstrated to act as fully biosynthetic analogues to protein‐polymer conjugates that can self‐assemble into biofunctional nanostructures such as hexagonal and lamellar phases in concentrated solutions. The phase behavior of two mCherry‐ELP fusions, E10‐mCherry‐E10 and E20‐mCherry, is investigated to compare linear and bola fusion self‐assembly both in diluted and concentrated aqueous solution. In dilute solution, the molecular topology impacts the stability of micelles formed above the thermal transition temperature of the ELP block, with the diblock forming micelles and the bola forming unstable aggregates. Despite the chemical similarity of the two protein blocks, the materials order into block copolymer‐like nanostructures across a wide range of concentrations at 30 wt% and above, with the bola fusion having a lower order‐disorder transition concentration than the diblock fusion. The topology of the molecule has a large impact on the type of nanostructure formed, with the two fusions forming phases in the opposite order as a function of temperature and concentration. This new system provides a rich landscape to explore the capabilities of fusion architecture to control supramolecular assemblies for bioactive materials. Self‐assembly of fusion proteins containing a folded globular protein into solid nanomaterials is demonstrated for the first time. Using model molecules containing ELP and mCherry, the ability to tune nanostructure is demonstrated through control over the fusion topology. As fully biosynthetic analogues to protein‐polymer conjugates, the mCherry‐ELP fusions provide an efficient route to introduce complex biological functionality into supramolecular assemblies.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201403453</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2015-02, Vol.25 (5), p.729-738
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1229476
source Wiley-Blackwell Read & Publish Collection
subjects Block copolymers
Forming
fusion proteins
Mathematical models
mCherry-ELPs
Nanostructure
nanostructure formation
Phases
Proteins
Self assembly
Topology
title Topological Effects on Globular Protein-ELP Fusion Block Copolymer Self-Assembly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Effects%20on%20Globular%20Protein-ELP%20Fusion%20Block%20Copolymer%20Self-Assembly&rft.jtitle=Advanced%20functional%20materials&rft.au=Qin,%20Guokui&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2015-02-04&rft.volume=25&rft.issue=5&rft.spage=729&rft.epage=738&rft.pages=729-738&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201403453&rft_dat=%3Cproquest_osti_%3E1669884419%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4533-26d9a936ec017108c592f5d206f9aa2da7bafc32d4feb885224dcff7c18e35983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669884419&rft_id=info:pmid/&rfr_iscdi=true