Loading…
Record Surface State Mobility and Quantum Hall Effect in Topological Insulator Thin Films via Interface Engineering
Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the...
Saved in:
Published in: | Nano letters 2015-12, Vol.15 (12), p.8245-8249 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In2Se3/(Bi0.5In0.5)2Se3 heterostructure, we introduce a quantum generation of Bi2Se3 films with an order of magnitude enhanced mobilities than before. This scheme has led to the first observation of the quantum Hall effect in Bi2Se3. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.5b03770 |