Loading…
Computation of the high temperature Coulomb density matrix in periodic boundary conditions
The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ2, where τ is the step size in the imaginary time. Here we presen...
Saved in:
Published in: | Computer physics communications 2016-07, Vol.204 (C), p.88-96 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-6deaec939a6401270dff1b6e9016d496acd77515025103d6bbf466d3a107db2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-6deaec939a6401270dff1b6e9016d496acd77515025103d6bbf466d3a107db2f3 |
container_end_page | 96 |
container_issue | C |
container_start_page | 88 |
container_title | Computer physics communications |
container_volume | 204 |
creator | Militzer, B. |
description | The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ2, where τ is the step size in the imaginary time. Here we present a method for systems with Coulomb interactions in periodic boundary conditions that consistently treats the all interactions with the same level of accuracy. It is shown that this leads to a more accurate high temperature solution of the Bloch equation. The method is applied to many-body simulation and tests for the isolated hydrogen atom and molecule are presented. |
doi_str_mv | 10.1016/j.cpc.2016.03.011 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1325278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465516300698</els_id><sourcerecordid>S0010465516300698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-6deaec939a6401270dff1b6e9016d496acd77515025103d6bbf466d3a107db2f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9gs9oTnOLEbMaGKL6kSCywslmO_UFdNXNkOgn-PozIz-Q33Hl0fQq4ZlAyYuN2V5mDKKp8l8BIYOyELtpJtUbV1fUoWAAyKWjTNObmIcQcAUrZ8QT7WfjhMSSfnR-p7mrZIt-5zSxMOBww6TQHp2k97P3TU4hhd-qGDTsF9UzfSHHHeOkM7P41Whx9q_GjdTIuX5KzX-4hXf--SvD8-vK2fi83r08v6flMYLmQqhEWNpuWtFjWwSoLte9YJbPNfbN0KbayUDWugahhwK7qur4WwXDOQtqt6viQ3R66PyaloXEKzzTNGNEkxXjWVXOUQO4ZM8DEG7NUhuCEPVgzUbFDtVDaoZoMKuMoGc-fu2MG8_sthmOE4GrQuzGzr3T_tXyeqejg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of the high temperature Coulomb density matrix in periodic boundary conditions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Militzer, B.</creator><creatorcontrib>Militzer, B.</creatorcontrib><description>The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ2, where τ is the step size in the imaginary time. Here we present a method for systems with Coulomb interactions in periodic boundary conditions that consistently treats the all interactions with the same level of accuracy. It is shown that this leads to a more accurate high temperature solution of the Bloch equation. The method is applied to many-body simulation and tests for the isolated hydrogen atom and molecule are presented.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2016.03.011</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Many-body simulations ; Path integral Monte Carlo</subject><ispartof>Computer physics communications, 2016-07, Vol.204 (C), p.88-96</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-6deaec939a6401270dff1b6e9016d496acd77515025103d6bbf466d3a107db2f3</citedby><cites>FETCH-LOGICAL-c367t-6deaec939a6401270dff1b6e9016d496acd77515025103d6bbf466d3a107db2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1325278$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Militzer, B.</creatorcontrib><title>Computation of the high temperature Coulomb density matrix in periodic boundary conditions</title><title>Computer physics communications</title><description>The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ2, where τ is the step size in the imaginary time. Here we present a method for systems with Coulomb interactions in periodic boundary conditions that consistently treats the all interactions with the same level of accuracy. It is shown that this leads to a more accurate high temperature solution of the Bloch equation. The method is applied to many-body simulation and tests for the isolated hydrogen atom and molecule are presented.</description><subject>Many-body simulations</subject><subject>Path integral Monte Carlo</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9gs9oTnOLEbMaGKL6kSCywslmO_UFdNXNkOgn-PozIz-Q33Hl0fQq4ZlAyYuN2V5mDKKp8l8BIYOyELtpJtUbV1fUoWAAyKWjTNObmIcQcAUrZ8QT7WfjhMSSfnR-p7mrZIt-5zSxMOBww6TQHp2k97P3TU4hhd-qGDTsF9UzfSHHHeOkM7P41Whx9q_GjdTIuX5KzX-4hXf--SvD8-vK2fi83r08v6flMYLmQqhEWNpuWtFjWwSoLte9YJbPNfbN0KbayUDWugahhwK7qur4WwXDOQtqt6viQ3R66PyaloXEKzzTNGNEkxXjWVXOUQO4ZM8DEG7NUhuCEPVgzUbFDtVDaoZoMKuMoGc-fu2MG8_sthmOE4GrQuzGzr3T_tXyeqejg</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Militzer, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201607</creationdate><title>Computation of the high temperature Coulomb density matrix in periodic boundary conditions</title><author>Militzer, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-6deaec939a6401270dff1b6e9016d496acd77515025103d6bbf466d3a107db2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Many-body simulations</topic><topic>Path integral Monte Carlo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Militzer, B.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Militzer, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the high temperature Coulomb density matrix in periodic boundary conditions</atitle><jtitle>Computer physics communications</jtitle><date>2016-07</date><risdate>2016</risdate><volume>204</volume><issue>C</issue><spage>88</spage><epage>96</epage><pages>88-96</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ2, where τ is the step size in the imaginary time. Here we present a method for systems with Coulomb interactions in periodic boundary conditions that consistently treats the all interactions with the same level of accuracy. It is shown that this leads to a more accurate high temperature solution of the Bloch equation. The method is applied to many-body simulation and tests for the isolated hydrogen atom and molecule are presented.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2016.03.011</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2016-07, Vol.204 (C), p.88-96 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_osti_scitechconnect_1325278 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Many-body simulations Path integral Monte Carlo |
title | Computation of the high temperature Coulomb density matrix in periodic boundary conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20high%20temperature%20Coulomb%20density%20matrix%20in%20periodic%20boundary%20conditions&rft.jtitle=Computer%20physics%20communications&rft.au=Militzer,%20B.&rft.date=2016-07&rft.volume=204&rft.issue=C&rft.spage=88&rft.epage=96&rft.pages=88-96&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2016.03.011&rft_dat=%3Celsevier_osti_%3ES0010465516300698%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-6deaec939a6401270dff1b6e9016d496acd77515025103d6bbf466d3a107db2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |