Loading…
First-Principles Chemical Kinetic Modeling of Methyl trans-3-Hexenoate Epoxidation by HO2
The design of innovative combustion processes relies on a comprehensive understanding of biodiesel oxidation kinetics. The present study aims at unraveling the reaction mechanism involved in the epoxidation of a realistic biodiesel surrogate, methyl trans-3-hexenoate, by hydroperoxy radicals using a...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-03, Vol.121 (9), p.1909-1915 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of innovative combustion processes relies on a comprehensive understanding of biodiesel oxidation kinetics. The present study aims at unraveling the reaction mechanism involved in the epoxidation of a realistic biodiesel surrogate, methyl trans-3-hexenoate, by hydroperoxy radicals using a bottom-up theoretical kinetics methodology. The obtained rate constants are in good agreement with experimental data for alkene epoxidation by HO2. The impact of temperature and pressure on epoxidation pathways involving H-bonded and non-H-bonded conformers was assessed. The obtained rate constant was finally implemented into a state-of-the-art detailed combustion mechanism, resulting in fairly good agreement with engine experiments. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.7b00519 |