Loading…
Plasma fuelling with cryogenic pellets in the stellarator TJ-II
Cryogenic pellet injection is a widely used technique for delivering fuel to the core of magnetically confined plasmas. Indeed, such systems are currently functioning on many tokamak, reversed field pinch and stellarator devices. A pipe-gun-type pellet injector is now operated on the TJ-II, a low-ma...
Saved in:
Published in: | Nuclear fusion 2017-04, Vol.57 (5), p.56039 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cryogenic pellet injection is a widely used technique for delivering fuel to the core of magnetically confined plasmas. Indeed, such systems are currently functioning on many tokamak, reversed field pinch and stellarator devices. A pipe-gun-type pellet injector is now operated on the TJ-II, a low-magnetic shear stellarator of the heliac type. Cryogenic hydrogen pellets, containing between 3 × 1018 and 4 × 1019 atoms, are injected at velocities between 800 and 1200 m s−1 from its low-field side into plasmas created and/or maintained in this device by electron cyclotron resonance and/or neutral beam injection heating. In this paper, the first systematic study of pellet ablation, particle deposition and fuelling efficiency is presented for TJ-II. From this, light-emission profiles from ablating pellets are found to be in reasonable agreement with simulated pellet ablation profiles (created using a neutral gas shielding-based code) for both heating scenarios. In addition, radial offsets between recorded light-emission profiles and particle deposition profiles provide evidence for rapid outward drifting of ablated material that leads to pellet particle loss from the plasma. Finally, fuelling efficiencies are documented for a range of target plasma densities (~4 × 1018- ~2 × 1019 m−3). These range from ~20%- ~85% and are determined to be sensitive to pellet penetration depth. Additional observations, such as enhanced core ablation, are discussed and planned future work is outlined. |
---|---|
ISSN: | 0029-5515 1741-4326 |
DOI: | 10.1088/1741-4326/aa64fd |