Loading…
Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene
A renewable route to p-xylene from biomass-derived dimethylfuran and ethylene is investigated with zeolite catalysts. Cycloaddition of ethylene and 2,5-dimethylfuran and subsequent dehydration to p-xylene has been achieved with 75% selectivity using H–Y zeolite and an aliphatic solvent at 300 °C. Co...
Saved in:
Published in: | ACS catalysis 2012-06, Vol.2 (6), p.935-939 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A renewable route to p-xylene from biomass-derived dimethylfuran and ethylene is investigated with zeolite catalysts. Cycloaddition of ethylene and 2,5-dimethylfuran and subsequent dehydration to p-xylene has been achieved with 75% selectivity using H–Y zeolite and an aliphatic solvent at 300 °C. Competitive side reactions include hydrolysis of dimethylfuran to 2,5-hexanedione, alkylation of p-xylene, and polymerization of 2,5-hexanedione. The observed reaction rates and computed energy barriers are consistent with a two-step reaction that proceeds through a bicyclic adduct prior to dehydration to p-xylene. Cycloaddition of ethylene and dimethylfuran occurs without a catalytic active site, but the reaction is promoted by confinement within microporous materials. The presence of Brønsted acid sites catalyzes dehydration of the Diels–Alder cycloadduct (to produce p-xylene and water), and this ultimately causes the rate-determining step to be the initial cycloaddition. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/cs300011a |