Loading…
Atmospheric plasma-sprayed BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) electrolyte membranes for intermediate-temperature solid oxide fuel cells
The high co-sintering temperature of BZCYYb electrolyte membranes supported by anode substrates usually causes a series of problems including undesirable electrolyte-anode reactions/diffusion and Ba-evaporation, posing a challenge for seeking alternative fabrication approaches. In this study, BZCYYb...
Saved in:
Published in: | Ceramics international 2016-12, Vol.42 (16), p.19231-19236 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high co-sintering temperature of BZCYYb electrolyte membranes supported by anode substrates usually causes a series of problems including undesirable electrolyte-anode reactions/diffusion and Ba-evaporation, posing a challenge for seeking alternative fabrication approaches. In this study, BZCYYb electrolyte membranes supported by anode substrates are fabricated by a large-scale and cost-effective atmospheric plasma spraying (APS) process. The 25µm thick BZCYYb membrane has negligible electrolyte-anode reactions/diffusion due to the APS process free of high-temperature co-firing. The Ba-evaporation problem is also resolved during APS process because of the adoption of large-grained BZCYYb feedstock powders. After 15 cycles of post-densification treatment by infiltrating, the plasma-sprayed BZCYYb membrane is dense enough for electrolyte application. The single cell based on dense plasma-sprayed BZCYYb electrolyte membrane shows a peak power density of 0.35Wcm−2 at 750°C using 3vol% humidified H2 as fuel and ambient air as oxidant. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2016.09.088 |