Loading…
Path integral Monte Carlo simulations of warm dense aluminum
We perform first-principles path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD) calculations to explore warm dense matter states of aluminum. Our equation of state (EOS) simulations cover a wide density-temperature range of 0.1-32.4gcm^{-3} and 10^{4}-10^{8} K....
Saved in:
Published in: | Physical review. E 2018-06, Vol.97 (6-1), p.063207-063207, Article 063207 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We perform first-principles path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD) calculations to explore warm dense matter states of aluminum. Our equation of state (EOS) simulations cover a wide density-temperature range of 0.1-32.4gcm^{-3} and 10^{4}-10^{8} K. Since PIMC and DFT-MD accurately treat effects of the atomic shell structure, we find two compression maxima along the principal Hugoniot curve attributed to K-shell and L-shell ionization. The results provide a benchmark for widely used EOS tables, such as SESAME, QEOS, and models based on Thomas-Fermi and average-atom techniques. A subsequent multishock analysis provides a quantitative assessment for how much heating occurs relative to an isentrope in multishock experiments. Finally, we compute heat capacity, pair-correlation functions, the electronic density of states, and 〈Z〉 to reveal the evolution of the plasma structure and ionization behavior. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.97.063207 |