Loading…
Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly
Fundamental questions about the relative arrangement of the β-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of t...
Saved in:
Published in: | Journal of the American Chemical Society 2003-05, Vol.125 (21), p.6391-6393 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fundamental questions about the relative arrangement of the β-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of this hypothesis, a short seven-residue segment of the Alzheimer's disease-related Aβ peptide, Aβ(16−22), was allowed to self-assemble under conditions that maintained the basic amphiphilic character of Aβ. Indeed, the number increased over 20-fold to 130 laminates, giving homogeneous bilayer structures that supercoil into long robust nanotubes. Small-angle neutron scattering and X-ray scattering defined the outer and inner radii of the nanotubes in solution to contain a 44-nm inner cavity with 4-nm-thick walls. Atomic force microscopy and transmission electron microscopy images further confirmed these homogeneous arrays of solvent-filled nanotubes arising from a flat rectangular bilayer, 130 nm wide × 4 nm thick, with each bilayer leaflet composed of laminated β-sheets. The corresponding backbone H-bonds are along the long axis, and β-sheet lamination defines the 130-nm bilayer width. This bilayer coils to give the final nanotube. Such robust and persistent self-assembling nanotubes with positively charged surfaces of very different inner and outer curvature now offer a unique, robust, and easily accessible scaffold for nanotechnology. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0341642 |