Loading…

Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly

Fundamental questions about the relative arrangement of the β-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2003-05, Vol.125 (21), p.6391-6393
Main Authors: Lu, Kun, Jacob, Jaby, Thiyagarajan, Pappannan, Conticello, Vincent P, Lynn, David G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a473t-4cdf5cdfae0f0645ac16e64f28f9956f7b334b7da3b10dd7dfd1fef0ab45c5fb3
cites cdi_FETCH-LOGICAL-a473t-4cdf5cdfae0f0645ac16e64f28f9956f7b334b7da3b10dd7dfd1fef0ab45c5fb3
container_end_page 6393
container_issue 21
container_start_page 6391
container_title Journal of the American Chemical Society
container_volume 125
creator Lu, Kun
Jacob, Jaby
Thiyagarajan, Pappannan
Conticello, Vincent P
Lynn, David G
description Fundamental questions about the relative arrangement of the β-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of this hypothesis, a short seven-residue segment of the Alzheimer's disease-related Aβ peptide, Aβ(16−22), was allowed to self-assemble under conditions that maintained the basic amphiphilic character of Aβ. Indeed, the number increased over 20-fold to 130 laminates, giving homogeneous bilayer structures that supercoil into long robust nanotubes. Small-angle neutron scattering and X-ray scattering defined the outer and inner radii of the nanotubes in solution to contain a 44-nm inner cavity with 4-nm-thick walls. Atomic force microscopy and transmission electron microscopy images further confirmed these homogeneous arrays of solvent-filled nanotubes arising from a flat rectangular bilayer, 130 nm wide × 4 nm thick, with each bilayer leaflet composed of laminated β-sheets. The corresponding backbone H-bonds are along the long axis, and β-sheet lamination defines the 130-nm bilayer width. This bilayer coils to give the final nanotube. Such robust and persistent self-assembling nanotubes with positively charged surfaces of very different inner and outer curvature now offer a unique, robust, and easily accessible scaffold for nanotechnology.
doi_str_mv 10.1021/ja0341642
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_15004073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73347408</sourcerecordid><originalsourceid>FETCH-LOGICAL-a473t-4cdf5cdfae0f0645ac16e64f28f9956f7b334b7da3b10dd7dfd1fef0ab45c5fb3</originalsourceid><addsrcrecordid>eNpt0E9LHDEYBvAgLXVre-gXkIFioYdp8z_jSRbRWllaYa2HXkKSSTTrTLImGXC_fSO7uJceQhLy4-HNA8AnBL8hiNH3lYKEIk7xAZghhmHLEOZvwAxCiFvRcXII3ue8qleKO_QOHCIsOiZENwNnF8_rIfriw30zHzf12DeXXic_NAs1-qCKj6FxMTW_VIhl0rZZ2sG185ztqIfNB_DWqSHbj7v9CPy5vLg9v2oXv3_8PJ8vWkUFKS01vWN1KQsd5JQpg7jl1OHOnZ4y7oQmhGrRK6IR7HvRux4566DSlBnmNDkCn7e5MRcvs_HFmgcTQ7CmSMTqz6AgVX3ZqnWKT5PNRY4-GzsMKtg4ZVkJFRR2FX7dQpNizsk6uU5-VGkjEZQvncrXTqs93oVOerT9Xu5KrOBkB1Q2anBJBePz3tGOQIhepmu3zudin1_fVXqUXBDB5O3NUl4t_17f8Dssr_e5ymS5ilMKteH_DPgPba2YuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73347408</pqid></control><display><type>article</type><title>Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lu, Kun ; Jacob, Jaby ; Thiyagarajan, Pappannan ; Conticello, Vincent P ; Lynn, David G</creator><creatorcontrib>Lu, Kun ; Jacob, Jaby ; Thiyagarajan, Pappannan ; Conticello, Vincent P ; Lynn, David G ; Emory Univ ; Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory (ANL), Argonne, IL (US) ; Univ. of Chicago</creatorcontrib><description>Fundamental questions about the relative arrangement of the β-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of this hypothesis, a short seven-residue segment of the Alzheimer's disease-related Aβ peptide, Aβ(16−22), was allowed to self-assemble under conditions that maintained the basic amphiphilic character of Aβ. Indeed, the number increased over 20-fold to 130 laminates, giving homogeneous bilayer structures that supercoil into long robust nanotubes. Small-angle neutron scattering and X-ray scattering defined the outer and inner radii of the nanotubes in solution to contain a 44-nm inner cavity with 4-nm-thick walls. Atomic force microscopy and transmission electron microscopy images further confirmed these homogeneous arrays of solvent-filled nanotubes arising from a flat rectangular bilayer, 130 nm wide × 4 nm thick, with each bilayer leaflet composed of laminated β-sheets. The corresponding backbone H-bonds are along the long axis, and β-sheet lamination defines the 130-nm bilayer width. This bilayer coils to give the final nanotube. Such robust and persistent self-assembling nanotubes with positively charged surfaces of very different inner and outer curvature now offer a unique, robust, and easily accessible scaffold for nanotechnology.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0341642</identifier><identifier>PMID: 12785778</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>60 APPLIED LIFE SCIENCES ; Amyloid - chemistry ; Amyloid beta-Peptides - chemistry ; Analytical chemistry ; ATOMIC FORCE MICROSCOPY ; Chemistry ; Circular Dichroism ; Exact sciences and technology ; HYPOTHESIS ; intense pulsed neutron source ; Microscopy, Atomic Force ; Miscellaneous ; Nanotechnology - methods ; NANOTUBES ; NERVOUS SYSTEM DISEASES ; Neutrons ; Peptide Fragments - chemistry ; PEPTIDES ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; SCATTERING ; Scattering, Radiation ; TRANSMISSION ELECTRON MICROSCOPY ; X-Rays</subject><ispartof>Journal of the American Chemical Society, 2003-05, Vol.125 (21), p.6391-6393</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a473t-4cdf5cdfae0f0645ac16e64f28f9956f7b334b7da3b10dd7dfd1fef0ab45c5fb3</citedby><cites>FETCH-LOGICAL-a473t-4cdf5cdfae0f0645ac16e64f28f9956f7b334b7da3b10dd7dfd1fef0ab45c5fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14830013$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12785778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/15004073$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Kun</creatorcontrib><creatorcontrib>Jacob, Jaby</creatorcontrib><creatorcontrib>Thiyagarajan, Pappannan</creatorcontrib><creatorcontrib>Conticello, Vincent P</creatorcontrib><creatorcontrib>Lynn, David G</creatorcontrib><creatorcontrib>Emory Univ</creatorcontrib><creatorcontrib>Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory (ANL), Argonne, IL (US)</creatorcontrib><creatorcontrib>Univ. of Chicago</creatorcontrib><title>Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Fundamental questions about the relative arrangement of the β-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of this hypothesis, a short seven-residue segment of the Alzheimer's disease-related Aβ peptide, Aβ(16−22), was allowed to self-assemble under conditions that maintained the basic amphiphilic character of Aβ. Indeed, the number increased over 20-fold to 130 laminates, giving homogeneous bilayer structures that supercoil into long robust nanotubes. Small-angle neutron scattering and X-ray scattering defined the outer and inner radii of the nanotubes in solution to contain a 44-nm inner cavity with 4-nm-thick walls. Atomic force microscopy and transmission electron microscopy images further confirmed these homogeneous arrays of solvent-filled nanotubes arising from a flat rectangular bilayer, 130 nm wide × 4 nm thick, with each bilayer leaflet composed of laminated β-sheets. The corresponding backbone H-bonds are along the long axis, and β-sheet lamination defines the 130-nm bilayer width. This bilayer coils to give the final nanotube. Such robust and persistent self-assembling nanotubes with positively charged surfaces of very different inner and outer curvature now offer a unique, robust, and easily accessible scaffold for nanotechnology.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amyloid - chemistry</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Analytical chemistry</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>Chemistry</subject><subject>Circular Dichroism</subject><subject>Exact sciences and technology</subject><subject>HYPOTHESIS</subject><subject>intense pulsed neutron source</subject><subject>Microscopy, Atomic Force</subject><subject>Miscellaneous</subject><subject>Nanotechnology - methods</subject><subject>NANOTUBES</subject><subject>NERVOUS SYSTEM DISEASES</subject><subject>Neutrons</subject><subject>Peptide Fragments - chemistry</subject><subject>PEPTIDES</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>SCATTERING</subject><subject>Scattering, Radiation</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>X-Rays</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpt0E9LHDEYBvAgLXVre-gXkIFioYdp8z_jSRbRWllaYa2HXkKSSTTrTLImGXC_fSO7uJceQhLy4-HNA8AnBL8hiNH3lYKEIk7xAZghhmHLEOZvwAxCiFvRcXII3ue8qleKO_QOHCIsOiZENwNnF8_rIfriw30zHzf12DeXXic_NAs1-qCKj6FxMTW_VIhl0rZZ2sG185ztqIfNB_DWqSHbj7v9CPy5vLg9v2oXv3_8PJ8vWkUFKS01vWN1KQsd5JQpg7jl1OHOnZ4y7oQmhGrRK6IR7HvRux4566DSlBnmNDkCn7e5MRcvs_HFmgcTQ7CmSMTqz6AgVX3ZqnWKT5PNRY4-GzsMKtg4ZVkJFRR2FX7dQpNizsk6uU5-VGkjEZQvncrXTqs93oVOerT9Xu5KrOBkB1Q2anBJBePz3tGOQIhepmu3zudin1_fVXqUXBDB5O3NUl4t_17f8Dssr_e5ymS5ilMKteH_DPgPba2YuA</recordid><startdate>20030528</startdate><enddate>20030528</enddate><creator>Lu, Kun</creator><creator>Jacob, Jaby</creator><creator>Thiyagarajan, Pappannan</creator><creator>Conticello, Vincent P</creator><creator>Lynn, David G</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20030528</creationdate><title>Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly</title><author>Lu, Kun ; Jacob, Jaby ; Thiyagarajan, Pappannan ; Conticello, Vincent P ; Lynn, David G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a473t-4cdf5cdfae0f0645ac16e64f28f9956f7b334b7da3b10dd7dfd1fef0ab45c5fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amyloid - chemistry</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Analytical chemistry</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>Chemistry</topic><topic>Circular Dichroism</topic><topic>Exact sciences and technology</topic><topic>HYPOTHESIS</topic><topic>intense pulsed neutron source</topic><topic>Microscopy, Atomic Force</topic><topic>Miscellaneous</topic><topic>Nanotechnology - methods</topic><topic>NANOTUBES</topic><topic>NERVOUS SYSTEM DISEASES</topic><topic>Neutrons</topic><topic>Peptide Fragments - chemistry</topic><topic>PEPTIDES</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>SCATTERING</topic><topic>Scattering, Radiation</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Kun</creatorcontrib><creatorcontrib>Jacob, Jaby</creatorcontrib><creatorcontrib>Thiyagarajan, Pappannan</creatorcontrib><creatorcontrib>Conticello, Vincent P</creatorcontrib><creatorcontrib>Lynn, David G</creatorcontrib><creatorcontrib>Emory Univ</creatorcontrib><creatorcontrib>Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory (ANL), Argonne, IL (US)</creatorcontrib><creatorcontrib>Univ. of Chicago</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Kun</au><au>Jacob, Jaby</au><au>Thiyagarajan, Pappannan</au><au>Conticello, Vincent P</au><au>Lynn, David G</au><aucorp>Emory Univ</aucorp><aucorp>Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory (ANL), Argonne, IL (US)</aucorp><aucorp>Univ. of Chicago</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2003-05-28</date><risdate>2003</risdate><volume>125</volume><issue>21</issue><spage>6391</spage><epage>6393</epage><pages>6391-6393</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>Fundamental questions about the relative arrangement of the β-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of this hypothesis, a short seven-residue segment of the Alzheimer's disease-related Aβ peptide, Aβ(16−22), was allowed to self-assemble under conditions that maintained the basic amphiphilic character of Aβ. Indeed, the number increased over 20-fold to 130 laminates, giving homogeneous bilayer structures that supercoil into long robust nanotubes. Small-angle neutron scattering and X-ray scattering defined the outer and inner radii of the nanotubes in solution to contain a 44-nm inner cavity with 4-nm-thick walls. Atomic force microscopy and transmission electron microscopy images further confirmed these homogeneous arrays of solvent-filled nanotubes arising from a flat rectangular bilayer, 130 nm wide × 4 nm thick, with each bilayer leaflet composed of laminated β-sheets. The corresponding backbone H-bonds are along the long axis, and β-sheet lamination defines the 130-nm bilayer width. This bilayer coils to give the final nanotube. Such robust and persistent self-assembling nanotubes with positively charged surfaces of very different inner and outer curvature now offer a unique, robust, and easily accessible scaffold for nanotechnology.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12785778</pmid><doi>10.1021/ja0341642</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2003-05, Vol.125 (21), p.6391-6393
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_15004073
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects 60 APPLIED LIFE SCIENCES
Amyloid - chemistry
Amyloid beta-Peptides - chemistry
Analytical chemistry
ATOMIC FORCE MICROSCOPY
Chemistry
Circular Dichroism
Exact sciences and technology
HYPOTHESIS
intense pulsed neutron source
Microscopy, Atomic Force
Miscellaneous
Nanotechnology - methods
NANOTUBES
NERVOUS SYSTEM DISEASES
Neutrons
Peptide Fragments - chemistry
PEPTIDES
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
SCATTERING
Scattering, Radiation
TRANSMISSION ELECTRON MICROSCOPY
X-Rays
title Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Amyloid%20Fibril%20Lamination%20for%20Nanotube%20Self-Assembly&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lu,%20Kun&rft.aucorp=Emory%20Univ&rft.date=2003-05-28&rft.volume=125&rft.issue=21&rft.spage=6391&rft.epage=6393&rft.pages=6391-6393&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja0341642&rft_dat=%3Cproquest_osti_%3E73347408%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a473t-4cdf5cdfae0f0645ac16e64f28f9956f7b334b7da3b10dd7dfd1fef0ab45c5fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73347408&rft_id=info:pmid/12785778&rfr_iscdi=true