Loading…

Statistical treatment for the wet bias in tree-ring chronologies: a case study from the Interior West, USA

Dendroclimatic research has long assumed a linear relationship between tree-ring increment and climate variables. However, ring width frequently underestimates extremely wet years, a phenomenon we refer to as ‘wet bias’. In this paper, we present statistical evidence for wet bias that is obscured by...

Full description

Saved in:
Bibliographic Details
Published in:Environmental and ecological statistics 2017-03, Vol.24 (1), p.131-150
Main Authors: Sun, Yan, Bekker, Matthew F., DeRose, R. Justin, Kjelgren, Roger, Wang, S.-Y. Simon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dendroclimatic research has long assumed a linear relationship between tree-ring increment and climate variables. However, ring width frequently underestimates extremely wet years, a phenomenon we refer to as ‘wet bias’. In this paper, we present statistical evidence for wet bias that is obscured by the assumption of linearity. To improve tree-ring-climate modeling, we take into account wet bias by introducing two modified linear regression models: a linear spline regression (LSR) and a likelihood-based wet bias adjusted linear regression (WBALR), in comparison with a quadratic regression (QR) model. Using gridded precipitation data and tree-ring indices of multiple species from various sites in Utah, both LSR and WBALR show a significant improvement over the linear regression model and out-perform QR in terms of in-sample R 2 and out-of-sample MSE. This further shows that the wet bias emerges from nonlinearity of tree-ring chronologies in reconstructing precipitation. The pattern and extent of wet bias varies by species, by site, and by precipitation regime, making it difficult to generalize the mechanisms behind its cause. However, it is likely that dis-coupling between precipitation amounts (e.g., percent received as rain/snow or percent infiltrating the soil) and its availability to trees (e.g., root zone dynamics), is the primary mechanism driving wet bias.
ISSN:1352-8505
1573-3009
DOI:10.1007/s10651-016-0363-x