Loading…

Anion Resistant Oxygen Reduction Electrocatalyst in Phosphoric Acid Fuel Cell

Phosphoric acid fuel cells are successfully used as energy conversion technologies in stationary power applications. However, decreased proton conductivity and lower oxygen permeability of phosphoric-acid-imbibed membranes require prohibitive loadings of the traditional noble-metal-based electrocata...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2018-05, Vol.8 (5), p.3833-3843
Main Authors: Strickland, Kara, Pavlicek, Ryan, Miner, Elise, Jia, Qingying, Zoller, Ivo, Ghoshal, Shraboni, Liang, Wentao, Mukerjee, Sanjeev
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phosphoric acid fuel cells are successfully used as energy conversion technologies in stationary power applications. However, decreased proton conductivity and lower oxygen permeability of phosphoric-acid-imbibed membranes require prohibitive loadings of the traditional noble-metal-based electrocatalyst, such as platinum supported on carbon. Additionally, specific adsorption of phosphate anions on the catalyst results in a surface poisoning that further reduces electrocatalytic activity. Here we report a nonplatinum group metal (non-PGM) electrocatalyst as an alternative cathode electrocatalyst for oxygen reduction in phosphoric acid fuel cells. The non-PGM was prepared in a one-pot synthesis using a metal organic framework and iron salt precursor. Phosphate anion poisoning was monitored electrochemically and spectroscopically in reference to the current state-of-the-art Pt-based catalyst at room temperature. Unlike Pt-based catalysts that are prone to phosphate poisoning, the non-PGM electrocatalyst exhibits immunity to surface poisoning by phosphate anions at room temperature. Imaging with microscopy reveals that the iron particles are isolated from the electrolyte by graphitic layers, which ultimately protect the iron from phosphate anion adsorption. The non-PGM electrocatalyst represents the highest performance to date in a high-temperature phosphoric acid membrane system, which is likely attributed to its immunity to phosphate adsorption at the harsher fuel cell environments.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.8b00390