Loading…
Thermodynamic modeling of the La-Te system aided by first-principles calculations
A complete thermodynamic description of the La-Te binary system is developed by means of CALculation of PHAse Diagram (CALPHAD) method in combination with available experimental data in the literature and the present first-principles calculations based on density functional theory. The intermetallic...
Saved in:
Published in: | Calphad 2018-06, Vol.61 (C), p.227-236 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-d5409b0cf5c1cd564a8d221a81a827b6b7cfb6d590c261f0ad3c2f5682f5c8aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-d5409b0cf5c1cd564a8d221a81a827b6b7cfb6d590c261f0ad3c2f5682f5c8aa3 |
container_end_page | 236 |
container_issue | C |
container_start_page | 227 |
container_title | Calphad |
container_volume | 61 |
creator | Hu, Yong-Jie Paz Soldan Palma, Jorge Wang, Yi Firdosy, Samad A. Star, Kurt E. Fleurial, Jean-Pierre Ravi, Vilupanur A. Liu, Zi-Kui |
description | A complete thermodynamic description of the La-Te binary system is developed by means of CALculation of PHAse Diagram (CALPHAD) method in combination with available experimental data in the literature and the present first-principles calculations based on density functional theory. The intermetallic phases with homogeneity ranges, La3-xTe4 and LaTe2-x, are modeled using a two-sublattice (La,Va)3(Te)4 model and a three-sublattice (La)1(Te)1(Te,Va)1 model based on their structure features, respectively. The intermetallic phases, LaTe and LaTe3, are treated as stoichiometric compounds. The thermodynamic properties of the intermetallic compounds and their corresponding end members at finite temperatures are predicted using first-principles quasi-harmonic approach. The associate solution model is used to describe the short-range ordering behavior of the liquid phase. The calculated phase diagram agrees well with the available phase equilibrium data in the literature. |
doi_str_mv | 10.1016/j.calphad.2018.03.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1543516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036459161730202X</els_id><sourcerecordid>2082284895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-d5409b0cf5c1cd564a8d221a81a827b6b7cfb6d590c261f0ad3c2f5682f5c8aa3</originalsourceid><addsrcrecordid>eNqFUMFqGzEQFSGBuGk-ISDS825H0krWnkoxbRMwlIJzFtqRtpZZrxxJLvjvK2PfA8PMHN6bee8R8sSgZcDU112LdjpsrWs5MN2CaAHEDVkwvRQN73V3SxYgVNfInql78innHQAshegW5M9m69M-utNs9wFp3fwU5r80jrRsPV3bZuNpPuXi99QG5x0dTnQMKZfmkMKM4TD5TOt_PE62hDjnz-RutFP2j9f5QN5-_tisXpr171-vq-_rBjvGSuNkB_0AOEpk6KTqrHacM6tr8eWghiWOg3KyB-SKjWCdQD5KpWtDba14IM-XuzGXYDKG4nGLcZ49FsNkJyRTFfTlAjqk-H70uZhdPKa56jIcNOe6072sKHlBYYo5Jz-a6m1v08kwMOeIzc5cIzbniA0IUyOuvG8Xnq8-_wWfzjL8jN6FdFbhYvjgwn84poc2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082284895</pqid></control><display><type>article</type><title>Thermodynamic modeling of the La-Te system aided by first-principles calculations</title><source>ScienceDirect Journals</source><creator>Hu, Yong-Jie ; Paz Soldan Palma, Jorge ; Wang, Yi ; Firdosy, Samad A. ; Star, Kurt E. ; Fleurial, Jean-Pierre ; Ravi, Vilupanur A. ; Liu, Zi-Kui</creator><creatorcontrib>Hu, Yong-Jie ; Paz Soldan Palma, Jorge ; Wang, Yi ; Firdosy, Samad A. ; Star, Kurt E. ; Fleurial, Jean-Pierre ; Ravi, Vilupanur A. ; Liu, Zi-Kui ; Univ. of California, Oakland, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>A complete thermodynamic description of the La-Te binary system is developed by means of CALculation of PHAse Diagram (CALPHAD) method in combination with available experimental data in the literature and the present first-principles calculations based on density functional theory. The intermetallic phases with homogeneity ranges, La3-xTe4 and LaTe2-x, are modeled using a two-sublattice (La,Va)3(Te)4 model and a three-sublattice (La)1(Te)1(Te,Va)1 model based on their structure features, respectively. The intermetallic phases, LaTe and LaTe3, are treated as stoichiometric compounds. The thermodynamic properties of the intermetallic compounds and their corresponding end members at finite temperatures are predicted using first-principles quasi-harmonic approach. The associate solution model is used to describe the short-range ordering behavior of the liquid phase. The calculated phase diagram agrees well with the available phase equilibrium data in the literature.</description><identifier>ISSN: 0364-5916</identifier><identifier>EISSN: 1873-2984</identifier><identifier>DOI: 10.1016/j.calphad.2018.03.003</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Binary system ; Binary systems ; Chemistry ; Computer simulation ; Density functional theory ; First principles ; Intermetallic compounds ; Intermetallic phases ; Materials Science ; Metallurgy & Metallurgical Engineering ; Phase diagrams ; Phase equilibria ; Phase transitions ; Thermodynamic models ; Thermodynamic properties ; Thermodynamics</subject><ispartof>Calphad, 2018-06, Vol.61 (C), p.227-236</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-d5409b0cf5c1cd564a8d221a81a827b6b7cfb6d590c261f0ad3c2f5682f5c8aa3</citedby><cites>FETCH-LOGICAL-c411t-d5409b0cf5c1cd564a8d221a81a827b6b7cfb6d590c261f0ad3c2f5682f5c8aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1543516$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yong-Jie</creatorcontrib><creatorcontrib>Paz Soldan Palma, Jorge</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Firdosy, Samad A.</creatorcontrib><creatorcontrib>Star, Kurt E.</creatorcontrib><creatorcontrib>Fleurial, Jean-Pierre</creatorcontrib><creatorcontrib>Ravi, Vilupanur A.</creatorcontrib><creatorcontrib>Liu, Zi-Kui</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Thermodynamic modeling of the La-Te system aided by first-principles calculations</title><title>Calphad</title><description>A complete thermodynamic description of the La-Te binary system is developed by means of CALculation of PHAse Diagram (CALPHAD) method in combination with available experimental data in the literature and the present first-principles calculations based on density functional theory. The intermetallic phases with homogeneity ranges, La3-xTe4 and LaTe2-x, are modeled using a two-sublattice (La,Va)3(Te)4 model and a three-sublattice (La)1(Te)1(Te,Va)1 model based on their structure features, respectively. The intermetallic phases, LaTe and LaTe3, are treated as stoichiometric compounds. The thermodynamic properties of the intermetallic compounds and their corresponding end members at finite temperatures are predicted using first-principles quasi-harmonic approach. The associate solution model is used to describe the short-range ordering behavior of the liquid phase. The calculated phase diagram agrees well with the available phase equilibrium data in the literature.</description><subject>Binary system</subject><subject>Binary systems</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Intermetallic compounds</subject><subject>Intermetallic phases</subject><subject>Materials Science</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Phase diagrams</subject><subject>Phase equilibria</subject><subject>Phase transitions</subject><subject>Thermodynamic models</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0364-5916</issn><issn>1873-2984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMFqGzEQFSGBuGk-ISDS825H0krWnkoxbRMwlIJzFtqRtpZZrxxJLvjvK2PfA8PMHN6bee8R8sSgZcDU112LdjpsrWs5MN2CaAHEDVkwvRQN73V3SxYgVNfInql78innHQAshegW5M9m69M-utNs9wFp3fwU5r80jrRsPV3bZuNpPuXi99QG5x0dTnQMKZfmkMKM4TD5TOt_PE62hDjnz-RutFP2j9f5QN5-_tisXpr171-vq-_rBjvGSuNkB_0AOEpk6KTqrHacM6tr8eWghiWOg3KyB-SKjWCdQD5KpWtDba14IM-XuzGXYDKG4nGLcZ49FsNkJyRTFfTlAjqk-H70uZhdPKa56jIcNOe6072sKHlBYYo5Jz-a6m1v08kwMOeIzc5cIzbniA0IUyOuvG8Xnq8-_wWfzjL8jN6FdFbhYvjgwn84poc2</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Hu, Yong-Jie</creator><creator>Paz Soldan Palma, Jorge</creator><creator>Wang, Yi</creator><creator>Firdosy, Samad A.</creator><creator>Star, Kurt E.</creator><creator>Fleurial, Jean-Pierre</creator><creator>Ravi, Vilupanur A.</creator><creator>Liu, Zi-Kui</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>201806</creationdate><title>Thermodynamic modeling of the La-Te system aided by first-principles calculations</title><author>Hu, Yong-Jie ; Paz Soldan Palma, Jorge ; Wang, Yi ; Firdosy, Samad A. ; Star, Kurt E. ; Fleurial, Jean-Pierre ; Ravi, Vilupanur A. ; Liu, Zi-Kui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-d5409b0cf5c1cd564a8d221a81a827b6b7cfb6d590c261f0ad3c2f5682f5c8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binary system</topic><topic>Binary systems</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Intermetallic compounds</topic><topic>Intermetallic phases</topic><topic>Materials Science</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Phase diagrams</topic><topic>Phase equilibria</topic><topic>Phase transitions</topic><topic>Thermodynamic models</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yong-Jie</creatorcontrib><creatorcontrib>Paz Soldan Palma, Jorge</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Firdosy, Samad A.</creatorcontrib><creatorcontrib>Star, Kurt E.</creatorcontrib><creatorcontrib>Fleurial, Jean-Pierre</creatorcontrib><creatorcontrib>Ravi, Vilupanur A.</creatorcontrib><creatorcontrib>Liu, Zi-Kui</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yong-Jie</au><au>Paz Soldan Palma, Jorge</au><au>Wang, Yi</au><au>Firdosy, Samad A.</au><au>Star, Kurt E.</au><au>Fleurial, Jean-Pierre</au><au>Ravi, Vilupanur A.</au><au>Liu, Zi-Kui</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modeling of the La-Te system aided by first-principles calculations</atitle><jtitle>Calphad</jtitle><date>2018-06</date><risdate>2018</risdate><volume>61</volume><issue>C</issue><spage>227</spage><epage>236</epage><pages>227-236</pages><issn>0364-5916</issn><eissn>1873-2984</eissn><abstract>A complete thermodynamic description of the La-Te binary system is developed by means of CALculation of PHAse Diagram (CALPHAD) method in combination with available experimental data in the literature and the present first-principles calculations based on density functional theory. The intermetallic phases with homogeneity ranges, La3-xTe4 and LaTe2-x, are modeled using a two-sublattice (La,Va)3(Te)4 model and a three-sublattice (La)1(Te)1(Te,Va)1 model based on their structure features, respectively. The intermetallic phases, LaTe and LaTe3, are treated as stoichiometric compounds. The thermodynamic properties of the intermetallic compounds and their corresponding end members at finite temperatures are predicted using first-principles quasi-harmonic approach. The associate solution model is used to describe the short-range ordering behavior of the liquid phase. The calculated phase diagram agrees well with the available phase equilibrium data in the literature.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2018.03.003</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-5916 |
ispartof | Calphad, 2018-06, Vol.61 (C), p.227-236 |
issn | 0364-5916 1873-2984 |
language | eng |
recordid | cdi_osti_scitechconnect_1543516 |
source | ScienceDirect Journals |
subjects | Binary system Binary systems Chemistry Computer simulation Density functional theory First principles Intermetallic compounds Intermetallic phases Materials Science Metallurgy & Metallurgical Engineering Phase diagrams Phase equilibria Phase transitions Thermodynamic models Thermodynamic properties Thermodynamics |
title | Thermodynamic modeling of the La-Te system aided by first-principles calculations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modeling%20of%20the%20La-Te%20system%20aided%20by%20first-principles%20calculations&rft.jtitle=Calphad&rft.au=Hu,%20Yong-Jie&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2018-06&rft.volume=61&rft.issue=C&rft.spage=227&rft.epage=236&rft.pages=227-236&rft.issn=0364-5916&rft.eissn=1873-2984&rft_id=info:doi/10.1016/j.calphad.2018.03.003&rft_dat=%3Cproquest_osti_%3E2082284895%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-d5409b0cf5c1cd564a8d221a81a827b6b7cfb6d590c261f0ad3c2f5682f5c8aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082284895&rft_id=info:pmid/&rfr_iscdi=true |