Loading…

An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families

An automated computational thermochemistry protocol based on explicitly correlated coupled-cluster theory was designed to produce highly accurate enthalpies of formation and atomization energies for small- to medium-sized molecular species (3–12 atoms). Each potential source of error was carefully e...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2019-07, Vol.123 (26), p.5673-5682
Main Authors: Welch, Bradley K, Dawes, Richard, Bross, David H, Ruscic, Branko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An automated computational thermochemistry protocol based on explicitly correlated coupled-cluster theory was designed to produce highly accurate enthalpies of formation and atomization energies for small- to medium-sized molecular species (3–12 atoms). Each potential source of error was carefully examined, and the sizes of contributions to the total atomization enthalpies were used to generate uncertainty estimates. The protocol was first used to generate total atomization enthalpies for a family of four molecular species exhibiting a variety of charges, multiplicities, and electronic ground states. The new protocol was shown to be in good agreement with the Active Thermochemical Tables database for the four species: the methyl peroxy radical, methoxyoxoniumylidene (methyl peroxy cation), methyl peroxy anion, and methyl hydroperoxide. Updating the Active Thermochemical Tables to include those results yielded significantly improved accuracy for the formation enthalpies of those species. The derived protocol was then used to predict formation enthalpies for the larger ethyl peroxy family of species.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.9b04381