Loading…
Self-organized coherent bursts of stimulated Raman scattering and speckle interaction in multi-speckled laser beams
Nonlinear physics governing the kinetic behavior of stimulated Raman scattering (SRS) in multi-speckled laser beams has been identified in the trapping regime over a wide range of kλD values (here k is the wave number of the electron plasma waves and λD is the Debye length) in homogeneous and inhomo...
Saved in:
Published in: | Physics of plasmas 2013-01, Vol.20 (1) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonlinear physics governing the kinetic behavior of stimulated Raman scattering (SRS) in multi-speckled laser beams has been identified in the trapping regime over a wide range of kλD values (here k is the wave number of the electron plasma waves and λD is the Debye length) in homogeneous and inhomogeneous plasmas. Hot electrons from intense speckles, both forward and side-loss hot electrons produced during SRS daughter electron plasma wave bowing and filamentation, seed and enhance the growth of SRS in neighboring speckles by reducing Landau damping. Trapping-enhanced speckle interaction through transport of hot electrons, backscatter, and sidescatter SRS light waves enable the system of speckles to self-organize and exhibit coherent, sub-ps SRS bursts with more than 100% instantaneous reflectivity, resulting in an SRS transverse coherence width much larger than a speckle width and a SRS spectrum that peaks outside the incident laser cone. SRS reflectivity is found to saturate above a threshold laser intensity at a level of reflectivity that depends on kλD: higher kλD leads to lower SRS and the reflectivity scales as ∼(kλD)−4. As kλD and Landau damping increase, speckle interaction via sidescattered light and side-loss hot electrons decreases and the occurrence of self-organized events becomes infrequent, leading to the reduction of time-averaged SRS reflectivity. It is found that the inclusion of a moderately strong magnetic field in the laser direction can effectively control SRS by suppressing transverse speckle interaction via hot electron transport. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4774964 |