Loading…
Gaussian-Process-Driven Adaptive Sampling for Reduced-Order Modeling of Texture Effects in Polycrystalline Alpha-Ti
Data-driven tools for finding structure–property (S–P) relations, such as the Materials Knowledge System (MKS) framework, can accelerate materials design, once the costly and technical calibration process has been completed. A three-model method is proposed to reduce the expense of S–P relation mode...
Saved in:
Published in: | JOM (1989) 2019-08, Vol.71 (8), p.2646-2656 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data-driven tools for finding structure–property (S–P) relations, such as the Materials Knowledge System (MKS) framework, can accelerate materials design, once the costly and technical calibration process has been completed. A three-model method is proposed to reduce the expense of S–P relation model calibration: (1) direct simulations are performed as per (2) a Gaussian process-based data collection model, to calibrate (3) an MKS homogenization model in an application to α-Ti. The new methods are compared favorably with expert texture selection on the performance of the so-calibrated MKS models. Benefits for the development of new and improved materials are discussed. |
---|---|
ISSN: | 1047-4838 1543-1851 |
DOI: | 10.1007/s11837-019-03553-1 |