Loading…
Engineering uranyl-chelating peptides from NikR for electrochemical peptide-based sensing applications
We have, for the first time, designed three uranyl-chelating peptides by modeling after the uranyl binding pocket found in a mutated Ni(II)-dependent transcriptional repressor (NikR). All three thiolated and methylene blue (MB)-modified peptides, NikR-5, NikR-11, and NikR-15, contain the five core a...
Saved in:
Published in: | Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2020-02, Vol.858 (C), p.113698, Article 113698 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have, for the first time, designed three uranyl-chelating peptides by modeling after the uranyl binding pocket found in a mutated Ni(II)-dependent transcriptional repressor (NikR). All three thiolated and methylene blue (MB)-modified peptides, NikR-5, NikR-11, and NikR-15, contain the five core amino acids responsible for target recognition, but the two longer peptides have either one or two additional glycine residues in between the five amino acids. These three peptide probes were then used in the fabrication of electrochemical peptide-based (E-PB) uranyl ion (U(VI)) sensors, with the goal of elucidating the effects of the added glycine residues and probe flexibility on target recognition. The sensing mechanism is similar to other “signal-off” E-PB sensors, in which binding of the target rigidifies the probe, resulting in a decrease in the redox signal from the tethered MB label. Although all three sensors responded to U(VI), the NikR-15 sensor's behavior was irreproducible and thus precluded from the rest of the study. The NikR-11 sensor showed the largest response to U(VI), whereas the NikR-5 sensor showed higher specificity for U(VI). The limit of detection was 50 nM for both sensors, which is well below the U.S. Environmental Protection Agency maximum contaminant level for uranium. Both sensors were further tested and proven functional in a 50% synthetic aquifer sample. Overall, the NikR-11 sensor, fabricated with the 11-amino acid probe, is deemed the optimal design. Incorporating glycine residues is a strategic way to lengthen the peptide slightly to improve target binding. This simple yet versatile approach to recreating binding pockets on electrode surfaces can potentially be employed in the design of other E-PB and surface-based metal ion sensors.
[Display omitted]
•3 peptide probes were designed from the U(VI)-binding pocket of a mutated NikR.•The NikR-15 sensor could not be reproducibly fabricated and was unstable.•The NikR-11 sensors showed the largest response in the presence of U(VI).•The NikR-5 sensor showed the highest specificity for U(VI).•The limit of detection for U(VI) was 50 nM for both NikR-5 and NikR-11 sensors. |
---|---|
ISSN: | 1572-6657 1873-2569 |
DOI: | 10.1016/j.jelechem.2019.113698 |